1
|
Wang C, Chen Z, Xiao S, He J. Visible light-induced hole transfer in single-nanoplate Cu 1.81S-CdS heterostructures. NANOSCALE 2024; 16:5401-5408. [PMID: 38376462 DOI: 10.1039/d3nr06450f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The separation and transfer of photogenerated carriers in semiconducting materials are essential processes that determine the efficiency of optoelectronic devices and photocatalysts, and transient absorption spectroscopy provides a powerful support for exploring the diffusion and recombination of photogenerated electrons and holes. Herein, high-quality Cu1.81S nanoplates were synthesized by a hot injection method, and were used as starting templates for the preparation of Cu1.81S-CdS heterojunctions and CdS nanoplates by cation exchange. Their carrier dynamics were investigated by transient absorption spectroscopy, which revealed that photogenerated holes may be transferred from the CdS phase to the Cu1.81S phase under 400 nm excitation. This process is in the opposite direction to the hole transfer induced by near-infrared localized surface plasmon resonance in copper sulfide heterostructures. Moreover, density functional theory calculations were used to further explain the visible light-induced hole transport process. This transfer is a potential way to increase the rate of H2 production and enhance the photostability of the catalyst.
Collapse
Affiliation(s)
- Chang Wang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| | - Zhaozhe Chen
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| | - Si Xiao
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| |
Collapse
|
2
|
Zhong Z, Fu H, Wang S, Duan Y, Wang Q, Yan CH, Du Y. A Universal Synthesis Strategy for Lanthanide Sulfide Nanocrystals with Efficient Photocatalytic Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301392. [PMID: 37086136 DOI: 10.1002/smll.202301392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Indexed: 05/03/2023]
Abstract
As an important lanthanide (Ln)-based functional materials, the Ln chalcogenides possess unique properties and various applications. However, the controllable synthesis of Ln chalcogenide nanocrystals still faces great challenges because of the rather poor affinity between Ln and chalcogenide ions (S, Se, Te) as well as strong preference of combination with existed oxygen. Herein, a facile but general heterogeneous nucleation synthetic strategy is established toward a series of colloidal ternary Cu Ln sulfides nanocrystals using the Ln dithiocarbamates and CuI as precursors. To extend this synthetic protocol, similar strategy is used to prepare six kinds of high quality CuLnS2 nanocrystals, while the bulk ones are only obtained by the traditional solid-state reaction at rigorous condition. Importantly, high-entropy nanocrystals CuLnS2 and CuEux Ln2-x S3 which contain six Ln elements (Nd, Sm, Gd, Tb, Dy) are readily obtained by the co-decomposed process attributed to their similar diffusion speed. As a proof-of-concept application, CuEu2 S3 nanocrystals showed efficient photocatalytic hydrogen production properties.
Collapse
Affiliation(s)
- Ziyun Zhong
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Siyuan Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yingnan Duan
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Qinglun Wang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Chun-Hua Yan
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
3
|
Torimoto T, Kameyama T, Uematsu T, Kuwabata S. Controlling Optical Properties and Electronic Energy Structure of I-III-VI Semiconductor Quantum Dots for Improving Their Photofunctions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Nwaji N, Akinoglu EM, Lin B, Wang X, Giersig M. One-Pot Synthesis of One-Dimensional Multijunction Semiconductor Nanochains from Cu 1.94S, CdS, and ZnS for Photocatalytic Hydrogen Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58630-58639. [PMID: 34866382 DOI: 10.1021/acsami.1c18020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chains of alternating semiconductor nanocrystals are complex nanostructures that can offer control over photogenerated charge carriers dynamics and quantized electronic states. We develop a simple one-pot colloidal synthesis of complex Cu1.94S-CdS and Cu1.94S-ZnS nanochains exploiting an equilibrium driving ion exchange mechanism. The chain length of the heterostructures can be tuned using a concentration dependent cation exchange mechanism controlled by the precursor concentrations, which enables the synthesis of monodisperse and uniform Cu1.94S-CdS-Cu1.94S nanochains featuring three epitaxial junctions. These seamless junctions enable efficient separation of photogenerated charge carriers, which can be harvested for photocatalytic applications. We demonstrate the superior photocatalytic activity of these noble metal free materials through solar hydrogen generation at a hydrogen evolution rate of 22.01 mmol g-1 h-1, which is 1.5-fold that of Pt/CdS heterostructure photocatalyst particles.
Collapse
Affiliation(s)
- Njemuwa Nwaji
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Liyuan Street, 526238 Guangdong, China
| | - Eser Metin Akinoglu
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Liyuan Street, 526238 Guangdong, China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Biyun Lin
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Liyuan Street, 526238 Guangdong, China
- National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Xin Wang
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Liyuan Street, 526238 Guangdong, China
- National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Michael Giersig
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Liyuan Street, 526238 Guangdong, China
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
5
|
Xia C, van Oversteeg CHM, Bogaards VCL, Spanjersberg THM, Visser NL, Berends AC, Meeldijk JD, de Jongh PE, de Mello Donega C. Synthesis and Formation Mechanism of Colloidal Janus-Type Cu 2-xS/CuInS 2 Heteronanorods via Seeded Injection. ACS NANO 2021; 15:9987-9999. [PMID: 34110780 PMCID: PMC8291760 DOI: 10.1021/acsnano.1c01488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Colloidal heteronanocrystals allow for the synergistic combination of properties of different materials. For example, spatial separation of the photogenerated electron and hole can be achieved by coupling different semiconductors with suitable band offsets in one single nanocrystal, which is beneficial for improving the efficiency of photocatalysts and photovoltaic devices. From this perspective, axially segmented semiconductor heteronanorods with a type-II band alignment are particularly attractive since they ensure the accessibility of both photogenerated charge carriers. Here, a two-step synthesis route to Cu2-xS/CuInS2 Janus-type heteronanorods is presented. The heteronanorods are formed by injection of a solution of preformed Cu2-xS seed nanocrystals in 1-dodecanethiol into a solution of indium oleate in oleic acid at 240 °C. By varying the reaction time, Janus-type heteronanocrystals with different sizes, shapes, and compositions are obtained. A mechanism for the formation of the heteronanocrystals is proposed. The first step of this mechanism consists of a thiolate-mediated topotactic, partial Cu+ for In3+ cation exchange that converts one of the facets of the seed nanocrystals into CuInS2. This is followed by homoepitaxial anisotropic growth of wurtzite CuInS2. The Cu2-xS seed nanocrystals also act as sacrificial Cu+ sources, and therefore, single composition CuInS2 nanorods are eventually obtained if the reaction is allowed to proceed to completion. The two-stage seeded growth method developed in this work contributes to the rational synthesis of Cu2-xS/CuInS2 heteronanocrystals with targeted architectures by allowing one to exploit the size and faceting of premade Cu2-xS seed nanocrystals to direct the growth of the CuInS2 segment.
Collapse
Affiliation(s)
- Chenghui Xia
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Christina H. M. van Oversteeg
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Veerle C. L. Bogaards
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Tim H. M. Spanjersberg
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Nienke L. Visser
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Anne C. Berends
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Johannes D. Meeldijk
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Petra E. de Jongh
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Celso de Mello Donega
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| |
Collapse
|
6
|
Guo X, Liu S, Wang W, Zhu C, Li C, Yang Y, Tian Q, Liu Y. Enhanced photocatalytic hydrogen production activity of Janus Cu 1.94S-ZnS spherical nanoheterostructures. J Colloid Interface Sci 2021; 600:838-846. [PMID: 34051468 DOI: 10.1016/j.jcis.2021.05.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/29/2022]
Abstract
Photocatalytic hydrogen evolution is one of the most promising approaches for efficient solar energy conversion. The light-harvesting ability and interfacial structure of heterostructured catalysts regulate the processes of photon injection and transfer, which further determines their photocatalytic performances. Here, we report a Janus Cu1.94S-ZnS nano-heterostructured photocatalyst synthesized using a facile stoichiometrically limited cation exchange reaction. Djurleite Cu1.94S and wurtzite ZnS share the anion skeleton, and the lattice mismatch between immiscible domains is ∼1.7%. Attributing to the high-quality interfacial structure, Janus Cu1.94S-ZnS nanoheterostructures (NHs) show an enhanced photocatalytic hydrogen evolution rate of up to 0.918 mmol h-1 g-1 under full-spectrum irradiation, which is ∼38-fold and 17-fold more than those of sole Cu1.94S and ZnS nanocrystals (NCs), respectively. The results indicate that cation exchange reaction is an efficient approach to construct well-ordered interfaces in hybrid photocatalysts, and it also demonstrates that reducing lattice mismatch and interfacial defects in hybrid photocatalysts is essential for enhancing their solar energy conversion performance.
Collapse
Affiliation(s)
- Xueyi Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Sheng Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Weijia Wang
- State Key Laboratory for Powder Metallurgy, Powder Metallurgy Research Institute, Central South University, Changsha 410083, China; Institute of Clinical Medicine, the Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China.
| | - Congtan Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Chongyao Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Ying Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Qinghua Tian
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Yong Liu
- State Key Laboratory for Powder Metallurgy, Powder Metallurgy Research Institute, Central South University, Changsha 410083, China; Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Gao Y, Wang L, Tian G, Zang S, Wang H, Niu J, Li LS. Morphology Controlled Synthesis of Composition Related Plasmonic CuCdS Alloy Nanocrystals. Front Chem 2021; 8:628536. [PMID: 33425861 PMCID: PMC7785700 DOI: 10.3389/fchem.2020.628536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Cu-based ternary alloy nanocrystals have emerged for extensive applications in solar cells, light-emitting devices (LEDs), and photoelectric detectors because of their low-toxicity, tunable band gaps, and large absorption coefficients. It is still an enormous challenge that regulating optical and electrical properties through changing their compositions and shapes in alloy nanocrystals. Herein, we present a facile method to synthesize CuCdS alloy nanocrystals (NCs) with tunable compositions and shapes at relatively low temperature. Different morphologies of monodisperse CuCdS nanocrystals are tailored successfully by simply adjusting the reaction temperature and Cu:Cd precursor molar ratio. The as-synthesized nanocrystals are of homogeneous alloy structures with uniform obvious lattice fringes throughout the whole particles rather than heterojunction structures. The localized surface plasmon resonance (LSPR) absorption peaks of CuCdS NCs are clearly observed and can be precisely tuned by varying the Cu:Cd molar ratio. Moreover, current-voltage (I-V) behaviors of different shaped CuCdS nanocrystals show certain rectification characteristics. The alloy CuCdS NCs with tunable shape, band gap, and compositionpossess a potential application in optoelectronic devices.
Collapse
Affiliation(s)
- Yan Gao
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Materials Science and Engineering, Henan University, Kaifeng, China
| | - Lei Wang
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Materials Science and Engineering, Henan University, Kaifeng, China
| | - Guimin Tian
- College of Materials Engineering, Henan University of Engineering, Zhengzhou, China
| | - Shuaipu Zang
- College of Materials Engineering, Henan University of Engineering, Zhengzhou, China
| | - Hongzhe Wang
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Materials Science and Engineering, Henan University, Kaifeng, China
| | - Jinzhong Niu
- College of Materials Engineering, Henan University of Engineering, Zhengzhou, China
| | - Lin Song Li
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Materials Science and Engineering, Henan University, Kaifeng, China
| |
Collapse
|
8
|
Li C, Wang W, Yang Y, Liu S, Zhu C, Tian Q. Core–shell Cu 1.94S–MnS nanoheterostructures synthesized by cation exchange for enhanced photocatalytic hydrogen evolution. CrystEngComm 2021. [DOI: 10.1039/d1ce00717c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The nanoheterostructures synthesized by cation exchange present the integration of synergetic designs into high-quality, well-defined catalysts for enhanced photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Chongyao Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Weijia Wang
- Research Institute of Resource Recycling, Central South University, Changsha 410083, China
- State Key Laboratory for Powder Metallurgy, Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Ying Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Sheng Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Congtan Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| | - Qinghua Tian
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Research Institute of Resource Recycling, Central South University, Changsha 410083, China
| |
Collapse
|