1
|
Chen Y, Zhu F, Leng J, Ying T, Jiang JW, Zhou Q, Chang T, Guo W, Gao H. Fluctuotaxis: Nanoscale directional motion away from regions of fluctuation. Proc Natl Acad Sci U S A 2023; 120:e2220500120. [PMID: 37487105 PMCID: PMC10401016 DOI: 10.1073/pnas.2220500120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/27/2023] [Indexed: 07/26/2023] Open
Abstract
Regulating the motion of nanoscale objects on a solid surface is vital for a broad range of technologies such as nanotechnology, biotechnology, and mechanotechnology. In spite of impressive advances achieved in the field, there is still a lack of a robust mechanism which can operate under a wide range of situations and in a controllable manner. Here, we report a mechanism capable of controllably driving directed motion of any nanoobjects (e.g., nanoparticles, biomolecules, etc.) in both solid and liquid forms. We show via molecular dynamics simulations that a nanoobject would move preferentially away from the fluctuating region of an underlying substrate, a phenomenon termed fluctuotaxis-for which the driving force originates from the difference in atomic fluctuations of the substrate behind and ahead of the object. In particular, we find that the driving force can depend quadratically on both the amplitude and frequency of the substrate and can thus be tuned flexibly. The proposed driving mechanism provides a robust and controllable way for nanoscale mass delivery and has potential in various applications including nanomotors, molecular machines, etc.
Collapse
Affiliation(s)
- Yang Chen
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Frontier Science Center of Mechanoinformatics, School of Mechanics and Engineering Science, Shanghai University, Shanghai200072, China
| | - Fangyan Zhu
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Frontier Science Center of Mechanoinformatics, School of Mechanics and Engineering Science, Shanghai University, Shanghai200072, China
| | - Jiantao Leng
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Frontier Science Center of Mechanoinformatics, School of Mechanics and Engineering Science, Shanghai University, Shanghai200072, China
| | - Tianquan Ying
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Frontier Science Center of Mechanoinformatics, School of Mechanics and Engineering Science, Shanghai University, Shanghai200072, China
| | - Jin-Wu Jiang
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Frontier Science Center of Mechanoinformatics, School of Mechanics and Engineering Science, Shanghai University, Shanghai200072, China
- Joint-Research Center for Computational Materials, Zhejiang Laboratory, Hangzhou311100, China
| | - Quan Zhou
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Frontier Science Center of Mechanoinformatics, School of Mechanics and Engineering Science, Shanghai University, Shanghai200072, China
| | - Tienchong Chang
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Frontier Science Center of Mechanoinformatics, School of Mechanics and Engineering Science, Shanghai University, Shanghai200072, China
- Joint-Research Center for Computational Materials, Zhejiang Laboratory, Hangzhou311100, China
- Shanghai Institute of Aircraft Mechanics and Control, Tongji University, Shanghai200092, China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Institute of Nanoscience of Nanjing University of Aeronautics and Astronautics, Nanjing210016, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore639798, Singapore
- Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore138632, Singapore
| |
Collapse
|
2
|
Hao S, Xie Z, Wang W, Kou J, Wu F. Self-propelled continuous transport of nanoparticles on a wedge-shaped groove track. NANOSCALE 2023; 15:4910-4916. [PMID: 36779838 DOI: 10.1039/d2nr05875h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Controlling the directional motion of nanoparticles on the surface is particularly important for human life, but achieving continuous transport is a time-consuming and demanding task. Here, a spontaneous movement of nanoflakes on a wedge-shaped groove track is demonstrated by using all-atom molecular dynamics (MD) simulations. Moreover, an optimized track, where one end of the substrate is cut into an angle, is introduced to induce a sustained directional movement. It is shown that the wedge-shaped interface results in a driving force for the nanoflakes to move from the diverging to the converging end, and the angular substrate provides an auxiliary driving force at the junction to maintain continuous transport. A force analysis is carried out in detail to reveal the driving mechanism. Moreover, the sustained transport is sensitive to the surface energy and structural characteristics of the track: the nanoflakes are more likely to move continuously on the track with lower surface energy and a smaller substrate and groove opening angle. The present findings are useful for designing nanodevices to control the movement of nanoparticles.
Collapse
Affiliation(s)
- Shaoqian Hao
- Institute of Theoretical Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China.
- Institute of Condensed Matter Physics, Zhejiang Provincial Key Laboratory of Solid State Optoelectronic Devices and Zhejiang Institute of Photonelectronics, Zhejiang Normal University, Jinhua 321004, China.
| | - Zhang Xie
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Wenyuan Wang
- Institute of Condensed Matter Physics, Zhejiang Provincial Key Laboratory of Solid State Optoelectronic Devices and Zhejiang Institute of Photonelectronics, Zhejiang Normal University, Jinhua 321004, China.
| | - Jianlong Kou
- Institute of Condensed Matter Physics, Zhejiang Provincial Key Laboratory of Solid State Optoelectronic Devices and Zhejiang Institute of Photonelectronics, Zhejiang Normal University, Jinhua 321004, China.
| | - Fengmin Wu
- Institute of Theoretical Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China.
- Institute of Condensed Matter Physics, Zhejiang Provincial Key Laboratory of Solid State Optoelectronic Devices and Zhejiang Institute of Photonelectronics, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
3
|
Machado LD, Bizao RA, Pugno NM, Galvão DS. Controlling Movement at Nanoscale: Curvature Driven Mechanotaxis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100909. [PMID: 34302438 DOI: 10.1002/smll.202100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Locating and manipulating nano-sized objects to drive motion is a time and effort consuming task. Recent advances show that it is possible to generate motion without direct intervention, by embedding the source of motion in the system configuration. In this work, an alternative manner to controllably displace nano-objects without external manipulation is demonstrated, by employing spiral-shaped carbon nanotube (CNT) and graphene nanoribbon structures (GNR). The spiral shape contains smooth gradients of curvature, which lead to smooth gradients of bending energy. It is shown that these gradients as well as surface energy gradients can drive nano-oscillators. An energy analysis is also carried out by approximating the carbon nanotube to a thin rod and how torsional gradients can be used to drive motion is discussed. For the nanoribbons, the role of layer orientation is also analyzed. The results show that motion is not sustainable for commensurate orientations, in which AB stacking occurs. For incommensurate orientations, friction almost vanishes, and in this instance, the motion can continue even if the driving forces are not very high. This suggests that mild curvature gradients, which can already be found in existing nanostructures, could provide mechanical stimuli to direct motion.
Collapse
Affiliation(s)
- Leonardo D Machado
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal-RN, 59072-970, Brazil
| | - Rafael A Bizao
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, São Paulo, 13566-590, Brazil
| | - Nicola M Pugno
- Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, 38123, Italy
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Douglas S Galvão
- Instituto de Física "Gleb Wataghin,", Universidade Estadual de Campinas, C. P. 6165, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
4
|
Theodorakis PE, Amirfazli A, Hu B, Che Z. Droplet Control Based on Pinning and Substrate Wettability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4248-4255. [PMID: 33818105 PMCID: PMC8154864 DOI: 10.1021/acs.langmuir.1c00215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Pinning of liquid droplets on solid substrates is ubiquitous and plays an essential role in many applications, especially in various areas such as microfluidics and biology. Although pinning can often reduce the efficiency of various applications, a deeper understanding of this phenomenon can actually offer possibilities for technological exploitation. Here, by means of molecular dynamics simulation, we identify the conditions that lead to droplet pinning or depinning and discuss the effects of key parameters in detail, such as the height of the physical pinning barrier and the wettability of the substrates. Moreover, we describe the mechanism of barrier crossing by the droplet upon depinning, identify the driving force of this process, and, also, elucidate the dynamics of the droplet. Not only does our work provide a detailed description of the pinning and depinning processes but also it explicitly highlights how both processes can be exploited in nanotechnology applications to control the droplet motion. Hence, we anticipate that our study will have significant implications for the nanoscale design of substrates in micro- and nanoscale systems and will assist with assessing pinning effects in various applications.
Collapse
Affiliation(s)
| | - Alidad Amirfazli
- Department
of Mechanical Engineering, York University, Toronto, M3J 1P3 Ontario, Canada
| | - Bin Hu
- Flow
Capture AS, Industriveien
1, 2020 Skedsmokorset, Norway
| | - Zhizhao Che
- State
Key Laboratory of Engines, Tianjin University, 300072 Tianjin, China
| |
Collapse
|
5
|
Leng J, Hu Y, Chang T. Nanoscale directional motion by angustotaxis. NANOSCALE 2020; 12:5308-5312. [PMID: 31872851 DOI: 10.1039/c9nr10108j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Directing motion of a nanoscale object on solid surfaces, in particular in an intrinsic way, is crucial for many aspects of nanotechnology applications. Here we report a novel intrinsic mechanism for nanoscale directional motion, termed angustotaxis, where a wide single walled carbon nanotube in a tapered channel drives itself toward the narrower end of the channel. The underlying physics of angustotaxis is attributed to the lower system potential when the nanotube is at a narrower region of the channel due to the increased contact area between the nanotube and the channel. Angustotaxis could lead to promising routes not only for nanoscale energy conversion from van der Waals potential to mechanical work, but also for mass transport like surface cleaning.
Collapse
Affiliation(s)
- Jiantao Leng
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, China.
| | | | | |
Collapse
|