1
|
Cai J, Zhang X, Wang T, Shi Y, Lin S. Synthesis of a carbon-wrapped microsphere MoO 2/Mo 2C heterojunction as an efficient electrocatalyst for the oxygen reduction reaction and the hydrogen evolution reaction. Dalton Trans 2023; 52:13991-14002. [PMID: 37740289 DOI: 10.1039/d3dt02537c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The development of non-noble metal catalysts for the optimization of conversion and storage devices is an important research topic. Hence, the microsphere MoO2/Mo2C/C heterojunction composites, which play an important role in the oxygen reduction reaction (ORR) and the hydrogen evolution reaction (HER), were synthesized using the solvothermal-sintering method. The results revealed that the as-prepared composite exhibited better ORR and HER catalytic performances than those of MoO2/Mo2C and Vulcan XC-72R (carbon black), and approaching that of commercial Pt/C. At the same time, it has a superior methanol tolerance and electrochemical stability than that of the commercial Pt/C. The excellent performance may be attributed to the synergistic effect of the MoO2/Mo2C heterostructure, highly conductive Vulcan XC-72R, and oxygen vacancies (Ov). This research offers new insights into the design and synthesis of cost-effective, environmentally friendly heterojunction composite catalysts used as a high-performance cathode material in fuel cells and water splitting.
Collapse
Affiliation(s)
- Jiannan Cai
- Fujian Polytechnic Normal University, Fuzhou 350300, China.
| | - Xiaofeng Zhang
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, China
| | - Ting Wang
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, China
| | - Yuande Shi
- Fujian Polytechnic Normal University, Fuzhou 350300, China.
| | - Shen Lin
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, China
| |
Collapse
|
2
|
Theoretical study on water gas shift mechanism on MoS2 supported single transition metal M (M=Co, Ni, Cu) catalysts. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Qian J, Wang X, Jiang H, Li S, Li C, Li S, Ma R, Wang J. Surface Engineering of Cr-Doped Cobalt Molybdate toward High-Performance Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18607-18615. [PMID: 35416031 DOI: 10.1021/acsami.2c03380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Replacing commercial noble metal catalysts with earth-abundant metal catalysts for hydrogen production is an important research direction for electrolytic water. Improving the catalytic performance of non-noble metals while maintaining stability is a key challenge for alkaline hydrogen evolution. Herein, we combined alkali etching and surface phosphating to regulate the properties of Cr-doped CoMoO4 material, forming a surface structure in which amorphous cobalt phosphate and Cr-doped Co(Mo)Ox coexist. As expected, the as-prepared catalytic material exhibits remarkable hydrogen evolution activity in 1.0 M KOH, only requiring a low overpotential of 52.7 mV to achieve a current density of 10 mA cm-2, and can maintain this current density for 24 h. The characterization and analysis of the catalyst before and after the stability test reveal that the Cr doping and surface engineering (i.e., alkali etching and phosphating) synergistically increase the adsorption and dissociation of water, optimize the desorption of H, and ultimately accelerate hydrogen evolution. This work provides a new strategy for tailoring nonprecious metal materials to improve the hydrogen production from water electrolysis.
Collapse
Affiliation(s)
- Jin Qian
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Xunlu Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Jiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanlin Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Chunjie Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Shengjuan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Ruguang Ma
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Jiacheng Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Sun Z, Wei C, Liu W, Liu H, Liu J, Hao R, Huang M, He S. Two-Dimensional MoO 2 Nanosheet Composite Hydrogels with High Transmittance and Excellent Photothermal Property for Near-Infrared Responsive Actuators and Microvalves. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33404-33416. [PMID: 34247475 DOI: 10.1021/acsami.1c04110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stimulus-responsive intelligent hydrogel actuators have highly promising applications in the fields of soft robotics, smart manipulators, and flexible devices. Near-infrared (NIR) light is considered an ideal method to trigger the response behavior remotely and precisely. In order to realize the excellent optical transmittance and photothermal property of NIR-responsive hydrogels at the same time, two-dimensional nonlayered MoO2 nanosheets (2D-MoO2) with excellent photothermal efficiency (62% under an NIR light irradiation of 808 nm), splendid chemistry stability, and low preparation cost are used as photothermal agents and incorporated into the poly(N-isopropylacrylamide) (PNIPAM) hydrogel network, forming the 2D-MoO2/Laponite/PNIPAM ternary nanocomposite hydrogel (TN hydrogel). It is remarkable that compared with the GO and MXene hydrogels with the same agent content (1.0 mg mL-1) and thickness (1 mm) whose transmittance values are only ∼5% at 600 nm, the TN hydrogel shows a similar NIR-responsive temperature, but much higher optical transmittance (∼53%). Besides, of the three hydrogels with similar transmittance, the TN hydrogel shows a much higher NIR-responsive temperature. The TN hydrogel with a low loading of 2D-MoO2 (1.5 mg mL-1) can produce a significant temperature increase of ∼30 °C after the application of 0.8 W cm-2 NIR light irradiation for 15 s. Impressively, the TN hydrogel exhibits excellent anti-fatigue property, keeping a fast response and temperature rise behavior even after 50 times of heating-cooling cycles. The flexibly controllable and reversible deformation is realized by a well-designed bilayer structure even in harsh environments. The transparent and asymmetric bilayer hydrogel is further used as a soft manipulator to capture objects visually and accurately. The NIR light-controlled microvalve based on this composite hydrogel is also demonstrated. This work provides a novel kind of transparent hybrid NIR response hydrogel for the further development of smart, programmable, reversible hydrogel-based actuators and soft robotics.
Collapse
Affiliation(s)
- Zhichao Sun
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, Henan, P. R. China
| | - Cong Wei
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, Henan, P. R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, Henan, P. R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, Henan, P. R. China
| | - Jiahui Liu
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, Henan, P. R. China
| | - Rui Hao
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, Henan, P. R. China
| | - Miaoming Huang
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, Henan, P. R. China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, Henan, P. R. China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
5
|
Tian J, Yang C, Liu Z, Li F, He X, Chen W, Xia NN, Lin C. Construction of MoO 2@MoS 2 heterostructures in situ on carbon cloth for the hydrogen evolution reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj04245a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MoO2@MoS2 heterostructures in situ grown on carbon cloth were developed for efficient hydrogen evolution reaction.
Collapse
Affiliation(s)
- Jingyang Tian
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Chundi Yang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Zhirui Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Funan Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Xiao He
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Wei Chen
- College of Light-Textile Engineering and Art, Anhui Agriculture University, Hefei, 230036, China
| | - Nan Nan Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Chong Lin
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
6
|
Kumar R, Ahmed Z, Kumar R, Jha SN, Bhattacharyya D, Bera C, Bagchi V. In situ modulation of silica-supported MoO2/Mo2C heterojunction for enhanced hydrogen evolution reaction. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00890g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hydrogen being a promising source of clean energy, the production of hydrogen using electrocatalysis and the development of carbon-neutral energy conversion technologies are crucial.
Collapse
Affiliation(s)
| | - Zubair Ahmed
- Institute of Nano Science and Technology
- Mohali
- India
| | - Ravi Kumar
- Atomic and Molecular Physics Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Shambhu Nath Jha
- Atomic and Molecular Physics Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | | | - Chandan Bera
- Institute of Nano Science and Technology
- Mohali
- India
| | - Vivek Bagchi
- Institute of Nano Science and Technology
- Mohali
- India
| |
Collapse
|