1
|
Boon-In S, Crespy D. Multiple-Temperature-Responsive Double- and Triple-Network Hydrogels. Macromol Rapid Commun 2024:e2400859. [PMID: 39673342 DOI: 10.1002/marc.202400859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Temperature-responsive hydrogels which are reversibly activated attract much attention in the field of smart materials. Herein, double- and triple-network hydrogels exhibiting dual- or triple-volume transitions upon changes of temperature are fabricated. Interestingly, the incorporation of superhydrophilic polymer network leads to a significant difference swelling or shrinkage of the multiple-network hydrogels. Applications of such hydrogels are envisioned in soft robotics or for producing programmable reactors.
Collapse
Affiliation(s)
- Supissra Boon-In
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Daniel Crespy
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| |
Collapse
|
2
|
Chen B, Liu J. Advancements in Hydrogel-Based Therapies for Ovarian Cancer: A Review. Cell Biochem Biophys 2024:10.1007/s12013-024-01483-7. [PMID: 39190214 DOI: 10.1007/s12013-024-01483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Ovarian cancer, the most deadly gynecologic malignancy, is often resistant to conventional antitumor therapy due to various factors such as severe side effects, unexpected recurrence, and significant tissue damage. The limitations of current treatments and the resistance of invasive tumor cells contribute to these challenges. Hydrogel therapy has recently emerged as a potential treatment option for ovarian cancer, offering advantages such as controllability, biocompatibility, high drug loading capacity, prolonged drug release, and responsiveness to specific stimuli. Hence, the utilization of biodegradable hydrogels as carriers for chemotherapeutic agents has emerged as a significant concern in the field. Injectable hydrogel-based drug delivery systems, in particular, have demonstrated superior efficacy compared to traditional systemic chemotherapy for cancer treatment. The pliability of hydrogel therapy allows for access to anatomical regions that may be challenging for surgical intervention. This review article examines recent advancements in the application of hydrogels for diagnosing and treating ovarian cancer, while also proposing a novel direction for the use of hydrogel technology in this context. The objective of this article is to offer a novel point of reference and serve as a source of inspiration for the advancement of more precise and individualized cancer therapies.
Collapse
Affiliation(s)
- Biqing Chen
- Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jiaqi Liu
- Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Li Z, Lu F, Liu Y. A Review of the Mechanism, Properties, and Applications of Hydrogels Prepared by Enzymatic Cross-linking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37390351 DOI: 10.1021/acs.jafc.3c01162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Hydrogels, as biological materials, are widely used in food, tissue engineering, and biomedical applications. Nevertheless, many issues remain in the preparation of hydrogels by physical and chemical methods, such as low bioaffinity, weak mechanical properties, and unstable structures, which also limit their applications in other fields. However, the enzymatic cross-linking method has the advantages of high catalytic efficiency, mild reaction conditions, and the presence of nontoxic substances. In this review, we evaluated the chemical, physical, and biological methods of preparing hydrogels and introduced three common cross-linking enzymes and their principles for preparing hydrogels. This review introduced the applications and properties of hydrogels prepared by the enzymatic method and also provided some suggestions regarding the current situation and future development of hydrogels prepared by enzymatic cross-linking.
Collapse
Affiliation(s)
- Ziyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
4
|
Calabria D, Pace A, Lazzarini E, Trozzi I, Zangheri M, Guardigli M, Pieraccini S, Masiero S, Mirasoli M. Smartphone-Based Chemiluminescence Glucose Biosensor Employing a Peroxidase-Mimicking, Guanosine-Based Self-Assembled Hydrogel. BIOSENSORS 2023; 13:650. [PMID: 37367015 DOI: 10.3390/bios13060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Chemiluminescence is widely used for hydrogen peroxide detection, mainly exploiting the highly sensitive peroxidase-luminol-H2O2 system. Hydrogen peroxide plays an important role in several physiological and pathological processes and is produced by oxidases, thus providing a straightforward way to quantify these enzymes and their substrates. Recently, biomolecular self-assembled materials obtained by guanosine and its derivatives and displaying peroxidase enzyme-like catalytic activity have received great interest for hydrogen peroxide biosensing. These soft materials are highly biocompatible and can incorporate foreign substances while preserving a benign environment for biosensing events. In this work, a self-assembled guanosine-derived hydrogel containing a chemiluminescent reagent (luminol) and a catalytic cofactor (hemin) was used as a H2O2-responsive material displaying peroxidase-like activity. Once loaded with glucose oxidase, the hydrogel provided increased enzyme stability and catalytic activity even in alkaline and oxidizing conditions. By exploiting 3D printing technology, a smartphone-based portable chemiluminescence biosensor for glucose was developed. The biosensor allowed the accurate measurement of glucose in serum, including both hypo- and hyperglycemic samples, with a limit of detection of 120 µmol L-1. This approach could be applied for other oxidases, thus enabling the development of bioassays to quantify biomarkers of clinical interest at the point of care.
Collapse
Affiliation(s)
- Donato Calabria
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Andrea Pace
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Elisa Lazzarini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Ilaria Trozzi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Agrofood Research (CIRI AGRO), Alma Mater Studiorum-University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
- Interdepartmental Centre for Industrial Research in Advanced Mechanical Engineering Applications and Materials Technology (CIRI MAM), Alma Mater Studiorum-University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
| | - Massimo Guardigli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum-University of Bologna, Via Sant'Alberto 163, I-48123 Ravenna, Italy
| | - Silvia Pieraccini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Stefano Masiero
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Mara Mirasoli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum-University of Bologna, Via Sant'Alberto 163, I-48123 Ravenna, Italy
| |
Collapse
|
5
|
Xiao R, Wei W, Li J, Xiao C, Yao H, Liu H. Constructing combinational and sequential logic devices through an intelligent electrocatalytic interface with immobilized MoS2 quantum dots and enzymes. Talanta 2022; 248:123615. [DOI: 10.1016/j.talanta.2022.123615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/24/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
6
|
Gellan gum and pectin-functionalised magnetic graphene oxide nanocomposites as nanocarriers for permethrin to control mosquito larvae. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Huang M, Sun C, Zhang X, Wang P, Xu S, Shi XR. The surface structure, stability, and catalytic performances toward O 2 reduction of CoP and FeCoP 2. Dalton Trans 2022; 51:10420-10431. [PMID: 35762394 DOI: 10.1039/d2dt01408d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The systematic atomistic level investigation of low-index surface structures, stabilities, and catalytic performances of CoP and FeCoP2 towards the O2 reduction reaction (ORR) is vital for their applications. Employing first-principles calculations, it is revealed that CoP and FeCoP2 present the same surface stability in the order of (101) ≈ (011) > (111) > (001) > (110) > (010) > (100). They also possess a similar Wulff equilibrium crystal shape with (101) and (011) exposing the largest surface area. From the electronic view, FeCoP2 presents improved electronic conductivity compared with CoP. From the energy view, whether FeCoP2 delivers improved electrocatalytic activity toward the ORR with respect to CoP depends on the reactive surfaces and sites. Among the 4 surfaces considered, only CoP(101), FeCoP2(101) and FeCoP2(011) delivered ORR performances theoretically when the bridge metal-metal site acts as the reactive center, which makes CoP(011) the only exception. CoP(101)-bCo-Co and FeCoP2(011)-bFe-Co exhibit a larger thermodynamic limiting potential than FeCoP2(101)-bCo-Co, suggesting their higher performances toward the ORR. The last step of HO* desorption as the rate-limiting step accounts for 3/4. The third step of transformation from O* to HO* as the most sluggish step accounts for 1/4. The work function, d-band center, Bader charge, and electronic localization function calculations are performed to reveal the HO adsorption nature. The present work provides fundamental insight into the effect of Fe doping into CoP, the determination of the catalyst surface and the key species adsorption nature to guide the rational design of high-performance materials.
Collapse
Affiliation(s)
- Mengru Huang
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| | - Chunyan Sun
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| | - Xiangrui Zhang
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| | - Peijie Wang
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| | - Shusheng Xu
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| | - Xue-Rong Shi
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| |
Collapse
|
8
|
Wang M, Zhao Z, Gong W, Zhang M, Lu N. Modulating the Biomimetic and Fluorescence Quenching Activities of Metal-Organic Framework/Platinum Nanoparticle Composites and Their Applications in Molecular Biosensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21677-21686. [PMID: 35499462 DOI: 10.1021/acsami.2c02781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoscale metal-organic frameworks (nMOFs) have gained considerable attention with significant potential applications. Although great efforts have been devoted to designing and fabricating nanoscaffold structures, approaches of deliberately regulating the intrinsic functionality of nMOFs have been poorly explored. Herein, we report a simple and novel strategy to regulate the catalytic and fluorescence quenching behaviors of nMOFs through coordination-driven self-assembly. As a proof-of-concept, we synthesized a synergistic and stable MOF-metal nanocomposite by loading platinum nanoparticles (PtNPs) on a commonly used Fe-MOF, i.e., MIL-88B-NH2/Pt, as a MOF composite model for exploration. On one hand, the complexation with ATP effectively broke the pH limitation of the peroxidase-mimicking MIL-88B-NH2/Pt nanozyme, bringing a 10-fold increased catalytic activity under alkaline condition. Based on the distinct catalytic enhancement between ATP and other nucleotides, real-time monitoring of apyrase activity as well as colorimetric detection of alkaline phosphatase (ALP) was performed. On the other hand, interactions of MIL-88B-NH2/Pt with fluorescent DNA were tolerant of different nucleic acids and, more importantly, were further manipulated by inorganic molecules. As a result, H2O2 could only trigger the release of a G-rich sequence, while phosphates could readily induce desorption of various DNA molecules with varying lengths, sequences, and fluorescent dyes. Accordingly, fluorescent DNA and MIL-88B-NH2/Pt as functional probe-quencher pairs were proposed, allowing the establishment of a fluorescence bioassay for ALP and PPase detection and Boolean logic calculations. This work offers a means to tune the intrinsic activities of nMOFs by surface engineering, benefiting design of functional nanomaterials and development of advanced biosensing systems.
Collapse
Affiliation(s)
- Mengqin Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhihang Zhao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Weijing Gong
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
9
|
Lu Z, Lu N, Xiao Y, Zhang Y, Tang Z, Zhang M. Metal-Nanoparticle-Supported Nanozyme-Based Colorimetric Sensor Array for Precise Identification of Proteins and Oral Bacteria. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11156-11166. [PMID: 35212535 DOI: 10.1021/acsami.1c25036] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Convenient, precise, and high-throughput discrimination of multiple bioanalytes is of great significance for an early diagnosis of diseases. Array-based pattern recognition has proven to be a powerful tool to detect diverse analytes, but developing sensing elements featuring favorable surface diversity still remains a challenge. In this work, we presented a simple and facile method to prepare programmable metal-nanoparticle (NP)-supported nanozymes (MNNs) as artificial receptors for the accurate identification of multiple proteins and oral bacteria. The in situ reduction of metal NPs on hierarchical MoS2 on polypyrrole (PPy), which generated differential nonspecific interactions with bioanalytes, was envisaged as the encoder to break through the limited supply of the receptor's quantity. As a proof of concept, three metal NPs, i.e., Au, Ag, and Pd NPs, were taken as examples to deposit on PPy@MoS2 as colorimetric probes to construct a cross-reactive sensor array. Based on the principal component analysis (PCA), the proposed MNN sensor array could well discriminate 11 proteins with unique fingerprint-like patterns at a concentration of 250 nM and was sufficiently sensitive to determine individual proteins with a detection limit down to the nanomolar level. Remarkably, two highly similar hemoglobins from different species (hemoglobin and bovine hemoglobin) have been precisely identified. Additionally, five oral bacteria were also well separated from each other without cross-classification at the level of 107 CFU mL-1. Furthermore, the sensor array allowed effective discrimination of complex protein mixtures either at different molar ratios or with minor varying components. Most importantly, the blind samples, proteins in human serums, proteins in simulated body fluid environment, the heat-denatured proteins, and even clinical cancer samples all could be well distinguished by the sensor array, demonstrating the real-world applications in clinical diagnosis.
Collapse
Affiliation(s)
- Zhanglu Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yang Xiao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yunqing Zhang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
10
|
GO-based antibacterial composites: Application and design strategies. Adv Drug Deliv Rev 2021; 178:113967. [PMID: 34509575 DOI: 10.1016/j.addr.2021.113967] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/18/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022]
Abstract
Graphene oxide (GO), for its unique structure with high biocompatibility and designability, is widely used in the antibacterial field. Various strategies have been designed to fabricate GO-based composites with antibacterial properties. This review summarized these strategies, divided them into three types and interpreted their antibacterial mechanisms: (i) "GO*/non-GO" type in which GO acts as the single antibacterial core, (ii) "GO*/non-GO*" type in which GO and non-GO components function synergistically as dual antibacterial cores, (iii) "GO/non-GO*" type in which non-GO acts as the single antibacterial core, while GO component plays a supportive, not a dominant role in antibiosis. Besides, the fields suiting their applications and factors influencing their antibacterial properties were analyzed. Finally, the limitations and prospects in the current researches were discussed. In summary, GO-based composites have revolutionized antibacterial strategies. This review may serve as a reference to inspire further research on GO-based antibacterial composites.
Collapse
|
11
|
Malekmohammadi S, Sedghi Aminabad N, Sabzi A, Zarebkohan A, Razavi M, Vosough M, Bodaghi M, Maleki H. Smart and Biomimetic 3D and 4D Printed Composite Hydrogels: Opportunities for Different Biomedical Applications. Biomedicines 2021; 9:1537. [PMID: 34829766 PMCID: PMC8615087 DOI: 10.3390/biomedicines9111537] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/10/2021] [Accepted: 10/16/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, smart/stimuli-responsive hydrogels have drawn tremendous attention for their varied applications, mainly in the biomedical field. These hydrogels are derived from different natural and synthetic polymers but are also composite with various organic and nano-organic fillers. The basic functions of smart hydrogels rely on their ability to change behavior; functions include mechanical, swelling, shaping, hydrophilicity, and bioactivity in response to external stimuli such as temperature, pH, magnetic field, electromagnetic radiation, and biological molecules. Depending on the final applications, smart hydrogels can be processed in different geometries and modalities to meet the complicated situations in biological media, namely, injectable hydrogels (following the sol-gel transition), colloidal nano and microgels, and three dimensional (3D) printed gel constructs. In recent decades smart hydrogels have opened a new horizon for scientists to fabricate biomimetic customized biomaterials for tissue engineering, cancer therapy, wound dressing, soft robotic actuators, and controlled release of bioactive substances/drugs. Remarkably, 4D bioprinting, a newly emerged technology/concept, aims to rationally design 3D patterned biological matrices from synthesized hydrogel-based inks with the ability to change structure under stimuli. This technology has enlarged the applicability of engineered smart hydrogels and hydrogel composites in biomedical fields. This paper aims to review stimuli-responsive hydrogels according to the kinds of external changes and t recent applications in biomedical and 4D bioprinting.
Collapse
Affiliation(s)
- Samira Malekmohammadi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran;
| | - Negar Sedghi Aminabad
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Amin Sabzi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Amir Zarebkohan
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran;
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Mehdi Razavi
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| | - Massoud Vosough
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Hajar Maleki
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, 50939 Cologne, Germany
| |
Collapse
|
12
|
Garg M, Gupta A, Sharma AL, Singh S. Advancements in 2D Materials Based Biosensors for Oxidative Stress Biomarkers. ACS APPLIED BIO MATERIALS 2021; 4:5944-5960. [DOI: 10.1021/acsabm.1c00625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mayank Garg
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arushi Gupta
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit L. Sharma
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Singh
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Sun C, Huang S, Huang M, Zhang X, Xu S, Wang H, Chen Y, Shi XR. Single-metal-atom catalysts supported on graphdiyne catalyze CO oxidation. Dalton Trans 2021; 50:10867-10879. [PMID: 34297016 DOI: 10.1039/d1dt00934f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-metal-atom catalysts supported on graphdiyne (GDY) exhibit great potential for catalyzing low temperature CO oxidation in solving the increasingly serious environmental problems caused by CO emissions due to the high catalytic activity, clear structure, uniform metal distribution and low cost. First principle calculations were employed to study CO oxidation activities of four M@GDY single-atom catalysts (M = Pt, Rh, Cu, and Ni). For each catalyst, five possible reaction mechanisms including bi-molecular and tri-molecular reactions were discussed. According to the calculated reaction barriers, the preferred reaction pathway is via the bi-molecular Langmuir-Hinshelwood (BLH) ((CO + O2)* → OCOO* → CO2 + O*) route to yield the first CO2 molecule with 0.55, 0.51, and 0.53 eV as the energy barriers of the rate-limiting steps of Pt@GDY, Rh@GDY, and Cu@GDY, respectively, whereas for Ni@GDY, it switches to the tri-molecular Eley-Rideal (TER1) ((2CO)* + O2→ OCOOCO* → 2CO2) mechanism with the reaction barrier of the rate-limiting step being 1.27 eV. Based on the energy difference in the initial states of the five reaction mechanisms, TER1 is generally viable. No matter it is based on the calculated reaction barrier or the energy of the initial state of each mechanism, the non-noble Cu@GDY is supposed to be an efficient catalyst as the noble ones. The electronic properties are calculated to explain the bonding strength and origin of the catalytic performance. The GDY support plays an important role in the electron transfer process.
Collapse
Affiliation(s)
- Chunyan Sun
- School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China.
| | - Simin Huang
- School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China.
| | - Mengru Huang
- School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China.
| | - Xiangrui Zhang
- School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China.
| | - Shusheng Xu
- School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China.
| | - Hui Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China and University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yanyan Chen
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China and State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, P.R. China
| | - Xue-Rong Shi
- School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China.
| |
Collapse
|
14
|
Adorinni S, Rozhin P, Marchesan S. Smart Hydrogels Meet Carbon Nanomaterials for New Frontiers in Medicine. Biomedicines 2021; 9:570. [PMID: 34070138 PMCID: PMC8158376 DOI: 10.3390/biomedicines9050570] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Carbon nanomaterials include diverse structures and morphologies, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. They have attracted great interest in medicine for their high innovative potential, owing to their unique electronic and mechanical properties. In this review, we describe the most recent advancements in their inclusion in hydrogels to yield smart systems that can respond to a variety of stimuli. In particular, we focus on graphene and carbon nanotubes, for applications that span from sensing and wearable electronics to drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Simone Adorinni
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
| | - Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
15
|
Li J, Lu N, Han S, Li X, Wang M, Cai M, Tang Z, Zhang M. Construction of Bio-Nano Interfaces on Nanozymes for Bioanalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21040-21050. [PMID: 33913690 DOI: 10.1021/acsami.1c04241] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanomaterials with enzyme-like activity (nanozymes) have been of great interest in broad applications ranging from biosensing to biomedical applications. Despite that much effort has been devoted to the development of the synthesis and applications of nanozymes, it is essential to understand the interactions between nanozymes and most commonly used biomolecules, i.e., avidin, streptavidin (SA), bovine serum albumin (BSA), immunoglobulin G (IgG), and glutathione (GSH), yet they have been rarely explored. Here, a series of bio-nano interfaces were constructed through direct immobilization of proteins on a variety of iron oxide and carbon-based nanozymes with different dimensions, including Fe3O4 nanoparticles (NPs, 0D), Fe3O4@C NPs (0D), Fe3O4@C nanowires (NWs, 1D), and graphene oxide nanosheets (GO NSs, 2D). Such interfaces enabled the modulation of the catalytic activities of the nanozymes with varying degrees, which allowed a good identification of multiplex proteins with high accuracy. Given the maximum inhibition on Fe3O4@C NP by BSA, we established molecular switches based on aptamer and toehold DNA, as well as Boolean logic gates (AND and NOR) in response to both DNA and proteins. Also importantly, we developed an on-particle reaction strategy for colorimetric detection of GSH with ultrahigh sensitivity and good specificity. The proposed sensor achieved a broad dynamic range spanning 7 orders of magnitude with a detection limit down to 200 pg mL-1, which was better than that of an in-solution reaction-based biosensor by 2 orders of magnitude. Furthermore, we explored the mechanisms of the interactions at bio-nano interfaces by studying the interfacial factors, including surface coverage, salt concentration, and the curvature of the nanozyme. This study offered new opportunities in the elaborate design and better utilization of nanozymes for bioanalysis in clinical diagnosis and in vivo detection.
Collapse
Affiliation(s)
- Jie Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Suping Han
- Department of Pharmacy, Shandong Medical College, Jinan 250002, China
| | - Xuemei Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Mengqin Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Mengchao Cai
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
16
|
Patil TV, Patel DK, Dutta SD, Ganguly K, Lim KT. Graphene Oxide-Based Stimuli-Responsive Platforms for Biomedical Applications. Molecules 2021; 26:2797. [PMID: 34068529 PMCID: PMC8126026 DOI: 10.3390/molecules26092797] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Graphene is a two-dimensional sp2 hybridized carbon material that has attracted tremendous attention for its stimuli-responsive applications, owing to its high surface area and excellent electrical, optical, thermal, and mechanical properties. The physicochemical properties of graphene can be tuned by surface functionalization. The biomedical field pays special attention to stimuli-responsive materials due to their responsive abilities under different conditions. Stimuli-responsive materials exhibit great potential in changing their behavior upon exposure to external or internal factors, such as pH, light, electric field, magnetic field, and temperature. Graphene-based materials, particularly graphene oxide (GO), have been widely used in stimuli-responsive applications due to their superior biocompatibility compared to other forms of graphene. GO has been commonly utilized in tissue engineering, bioimaging, biosensing, cancer therapy, and drug delivery. GO-based stimuli-responsive platforms for wound healing applications have not yet been fully explored. This review describes the effects of different stimuli-responsive factors, such as pH, light, temperature, and magnetic and electric fields on GO-based materials and their applications. The wound healing applications of GO-based materials is extensively discussed with cancer therapy and drug delivery.
Collapse
Affiliation(s)
- Tejal V. Patil
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Dinesh K. Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
17
|
Huang S, Shi XR, Sun C, Duan Z, Ma P, Xu S. The Application of Metal-Organic Frameworks and Their Derivatives for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2268. [PMID: 33207732 PMCID: PMC7696577 DOI: 10.3390/nano10112268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 02/03/2023]
Abstract
Supercapacitors (SCs), one of the most popular types of energy-storage devices, present lots of advantages, such as large power density and fast charge/discharge capability. Being the promising SCs electrode materials, metal-organic frameworks (MOFs) and their derivatives have gained ever-increasing attention due to their large specific surface area, controllable porous structure and rich diversity. Herein, the recent development of MOFs-based materials and their application in SCs as the electrode are reviewed and summarized. The preparation method, the morphology of the materials and the electrical performance of various MOFs and their derivatives (such as carbon, metal oxide/hydroxide and metal sulfide) are briefly discussed. Most of recent works concentrate on Ni-, Co- and Mn-MOFs and their composites/derivatives. Conclusions and our outlook for the researches are also given, which would be a valuable guideline for the rational design of MOFs materials for SCs in the near future.
Collapse
Affiliation(s)
- Simin Huang
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Xue-Rong Shi
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
- Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Chunyan Sun
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Zhichang Duan
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Pan Ma
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Shusheng Xu
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| |
Collapse
|
18
|
Tan B, Huang L, Wu Y, Liao J. Advances and trends of hydrogel therapy platform in localized tumor treatment: A review. J Biomed Mater Res A 2020; 109:404-425. [PMID: 32681742 DOI: 10.1002/jbm.a.37062] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 02/04/2023]
Abstract
Due to limitations of treatment and the stubbornness of infiltrative tumor cells, the outcome of conventional antitumor treatment is often compromised by a variety of factors, including severe side effects, unexpected recurrence, and massive tissue loss during the treatment. Hydrogel-based therapy is becoming a promising option of cancer treatment, because of its controllability, biocompatibility, high drug loading, prolonged drug release, and specific stimuli-sensitivity. Hydrogel-based therapy has good malleability and can reach some areas that cannot be easily touched by surgeons. Furthermore, hydrogel can be used not only as a carrier for tumor treatment agents, but also as a scaffold for tissue repair. In this review, we presented the latest researches in hydrogel applications of localized tumor therapy and highlighted the recent progress of hydrogel-based therapy in preventing postoperative tumor recurrence and improving tissue repair, thus proposing a new trend of hydrogel-based technology in localized tumor therapy. And this review aims to provide a novel reference and inspire thoughts for a more accurate and individualized cancer treatment.
Collapse
Affiliation(s)
- Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingxiao Huang
- Department of Basic Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Peng H, Zhang J, Zeng C, Zhou C, Li Q, Lu N, Wang L. One-Dimensional Synergistic Core–Shell Nanozymes with Superior Peroxidase-like Activity for Ultrasensitive Colorimetric Detection of Blood Cholesterol. ACS APPLIED BIO MATERIALS 2020; 3:5111-5119. [DOI: 10.1021/acsabm.0c00588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hongzhen Peng
- Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiaxing Zhang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Caixia Zeng
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Chaoqun Zhou
- Pennsylvania State University, 128 Stamford Heights, State College, Pennsylvania 16803; United States
| | - Qingnuan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Lihua Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
20
|
Sun XW, Wang ZH, Li YJ, Yang HL, Gong GF, Zhang YM, Yao H, Wei TB, Lin Q. Transparency and AIE tunable supramolecular polymer hydrogel acts as TEA-HCl vapor controlled smart optical material. SOFT MATTER 2020; 16:5734-5739. [PMID: 32525181 DOI: 10.1039/d0sm00522c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stimuli-responsive optical materials attract lots of attention due to their broad applications. Herein, a novel smart stimuli-responsive supramolecular polymer was successfully constructed using a simple tripodal quaternary ammonium-based gelator (TH). The TH self-assembles into a supramolecular polymer hydrogel (TH-G) and shows aggregation-induced emission (AIE) properties. Interestingly, the transparency and fluorescence of the TH-G xerogel film (TH-GF) could be reversibly regulated by use of triethylamine (TEA) and hydrochloric acid (HCl) vapor. When alternately fumed with TEA and HCl vapor, the optical transmittance of the TH-GF was changed from 8.9% to 92.7%. Meanwhile, the fluorescence of the TH-G shows an "ON/OFF" switch. The reversible switching of the transparency and the fluorescence of the TH-GF is attributed to the assembly and disassembly of the supramolecular polymer TH-G. Based on these stimuli-response properties, the TH-GF could act as an optical material and shows potential applications as smart windows or fluorescent display material controlled by TEA and HCl vapor.
Collapse
Affiliation(s)
- Xiao-Wen Sun
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Zhong-Hui Wang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Ying-Jie Li
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Hai-Long Yang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Guan-Fei Gong
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Hong Yao
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Tai-Bao Wei
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Qi Lin
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|