1
|
Mim M, Habib K, Farabi SN, Ali SA, Zaed MA, Younas M, Rahman S. MXene: A Roadmap to Sustainable Energy Management, Synthesis Routes, Stabilization, and Economic Assessment. ACS OMEGA 2024; 9:32350-32393. [PMID: 39100332 PMCID: PMC11292634 DOI: 10.1021/acsomega.4c04849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
MXenes with their wide range of tunability and good surface chemistry provide unique and distinctive characteristics offering potential employment in various aspects of energy management applications. These high-performance materials have attracted considerable attention in recent decades due to their outstanding characteristics. In the literature, most of the work is related to specific methods for the preparation of MXenes. In this Review, we present a detailed discussion on the synthesis of MXenes through different etching routes involving acids, such as hydrochloric acid, hydrofluoric acid, and lithium fluoride, and non-acidic alkaline solution, electrochemical, and molten salt methods. Furthermore, a concise overview of the different structural, optical, electronic, and magnetic properties of MXenes is provided corresponding to their role in supporting high thermal, chemical, mechanical, environmental, and electrochemical stability. Additionally, the role of MXenes in maintaining the thermal management performance of photovoltaic thermal systems (PV/T), wearable light heaters, solar water desalination, batteries, and supercapacitors is also briefly discussed. A techno-economic and life cycle analysis of MXenes is provided to analyze their sustainability, scalability, and commercialization to facilitate a comprehensive array of energy management systems. Lastly, the technology readiness level of MXenes is defined, and future recommendations for MXenes are provided for their further utilization in niche applications. The present work strives to link the chemistry of MXenes to process economics for energy management applications.
Collapse
Affiliation(s)
- Mumtahina Mim
- Department
of Mechanical Engineering, Universiti Teknologi
PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Khairul Habib
- Department
of Mechanical Engineering, Universiti Teknologi
PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Sazratul Nayeem Farabi
- Department
of Mechanical Engineering, Universiti Teknologi
PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Syed Awais Ali
- Department
of Mechanical Engineering, Universiti Teknologi
PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Md Abu Zaed
- Research
Centre for Nanomaterials and Energy Technology (RCNMET), School of
Engineering and Technology, Sunway University, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Mohammad Younas
- Department
of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial
Engineering, University of Engineering and
Technology, 25120 Peshawar, Pakistan
- CAS
Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Saidur Rahman
- Research
Centre for Nanomaterials and Energy Technology (RCNMET), School of
Engineering and Technology, Sunway University, 47500 Petaling
Jaya, Selangor, Malaysia
- School
of Engineering, Lancaster University, Lancaster LA1 4YW, U.K.
| |
Collapse
|
2
|
Zhang H, Lou Y, Wu D, Liao Y, Xie J. Tuning the magnetic properties of double transition-metal carbide CoMC (M = Ti, V, Cr, Mn, Fe, Ni) monolayers. Phys Chem Chem Phys 2024; 26:12681-12697. [PMID: 38600841 DOI: 10.1039/d3cp06033k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The intrinsic ferromagnetism of two-dimensional transition metal carbide Co2C is remarkable. However, its practical application in spintronic devices is encumbered by a low Curie temperature (TC). To surmount this constraint, double transition-metal carbide CoMC (M = Ti, V, Cr, Mn, Fe, Ni) monolayers are constructed with the aim of improving the magnetic properties and Curie temperature of Co2C. The magnetic properties of CoMC monolayers are comprehensively investigated by first-principles calculations and the effects of hole doping and biaxial strain on the magnetic properties of CoMC (M = V, Cr, Mn) monolayers are also studied. The ground states of CoTiC, CoMnC and CoNiC monolayers all favor ferromagnetic ordering, whereas the CoVC and CoCrC monolayers favor antiferromagnetic ordering and the CoFeC monolayer is non-magnetic. Excitedly, the CoMnC monolayer displays a high total magnetic moment of 4.024μB and a TC of 1366 K. Moreover, the control of hole doping can effectively improve the TC of CoVC, CoCrC, and CoMnC monolayers to 680, 1317, 3044 K, respectively. Finally, applying the in-plain biaxial strain, the CoVC monolayer can be transformed into a ferromagnetic semiconductor under a tensile strain of 6%. The TC values of CoVC, CoCrC, and CoMnC monolayers are tuned by biaxial strain to 440, 1334 and 2390 K, respectively. Their TC above room temperature demonstrates that these monolayers have potential applications in spintronic devices. These theoretical investigations provide valuable insights into guiding experimental synthesis endeavors.
Collapse
Affiliation(s)
- Honghai Zhang
- College of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China.
| | - Yaya Lou
- College of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China.
| | - Dongni Wu
- College of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China.
| | - Yangfang Liao
- College of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China.
| | - Jing Xie
- College of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China.
| |
Collapse
|
3
|
García-Romeral N, Morales-García Á, Viñes F, de P R Moreira I, Illas F. The nature of the electronic ground state of M 2C (M = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) MXenes. Phys Chem Chem Phys 2023; 25:31153-31164. [PMID: 37953662 DOI: 10.1039/d3cp04402e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A systematic computational study is presented aimed at accurately describing the electronic ground state nature and properties of M2C (M = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) MXenes. Electronic band structure calculations in the framework of density functional theory (DFT), carried out with different types of basis sets and employing the generalized gradient approach (GGA) and hybrid functionals, provide strong evidence that Ti2C, Zr2C, Hf2C, and Cr2C MXenes exhibit an open-shell conducting ground state with localized spins on the metal atoms, while V2C, Nb2C, Mo2C, Ta2C, and W2C MXenes exhibit a diamagnetic conducting ground state. For Ti2C, Zr2C, Hf2C, and Cr2C, the analysis of the low-lying spin polarized solutions with different spin orderings indicates that their ground states are antiferromagnetic (AFM), consisting of two ferromagnetic (FM) metal layers coupled antiferromagnetically. For the diamagnetic MXenes, the converged spin polarized solutions are significantly less stable than the closed shell solution except for the case of V2C and Mo2C where those excited open shell solutions can be thermally accessible (less than 300 meV per formula unit). The analysis of charge and spin density distributions of the ground state of the MXenes reveals that, in all cases, the metal atoms have a net charge close to +1 e and C atoms close to -2 e. In the case of diamagnetic MXenes, the electronic structure of V2C, Nb2C, and Ta2C is consistent with metal atoms exhibiting a closed-shell s2d2 configuration whereas for Mo2C, and W2C is consistent with a low-spin s1d4 configuration although the FM solution is close in energy for V2C and Mo2C suggesting that they may play a role in their chemistry at high temperature. For the open shell MXenes, the spin density primarily located at the metal atoms showing one unpaired electron per Ti+, Zr+, and Hf+ magnetic center, consistent with s2d1 configuration of the metal atom, and of ∼3.5 unpaired electrons per Cr+ magnetic center interpreted as a mixture of s2d3 and high-spin s1d4 configuration. Finally, the analysis of the density of states reveals the metallic character of all these bare MXenes, irrespective of the nature of the ground state, with significant covalent contributions for Mo2C and W2C.
Collapse
Affiliation(s)
- Néstor García-Romeral
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Ángel Morales-García
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Ibério de P R Moreira
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
4
|
Zhang J, He Z, Gao C, Tao Y, Liang F, Li G, Gao B, Song G. Intrinsic half-metallicity in two-dimensional Cr 2TeX 2 (X = I, Br, Cl) monolayers. RSC Adv 2023; 13:29721-29728. [PMID: 37822665 PMCID: PMC10562977 DOI: 10.1039/d3ra05780a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Two-dimensional (2D) materials with intrinsic half-metallicity at or above room temperature are important in spin nanodevices. Nevertheless, such 2D materials in experiment are still rarely realized. In this work, a new family of 2D Cr2TeX2 (X = I, Br, Cl) monolayers has been predicted using first-principles calculations. The monolayer is made of five atomic sublayers with ABCAB-type stacking along the perpendicular direction. It is found that the energies for all the ferromagnetic (FM) half-metallic states are the lowest. The phonon spectrum calculations and molecular dynamics simulations both demonstrate that the FM states are stable, indicating the possibility of experimentally obtaining the 2D Cr2TeX2 monolayers with half-metallicity. The Curie temperatures from Monte Carlo simulations are 486, 445, and 451 K for Cr2TeI2, Cr2TeBr2, and Cr2TeCl2 monolayers, respectively, and their half-metallic bandgaps are 1.72, 1.86 and 1.90 eV. The corresponding magnetocrystalline anisotropy energies (MAEs) are about 1185, 502, 899 μeV per Cr atom for Cr2TeX2 monolayers, in which the easy axes are along the plane for the Cr2TeBr2 and Cr2TeCl2 monolayers, but being out of the plane in the Cr2TeI2. Our study implies the potential application of the 2D Cr2TeX2 (X = I, Br, Cl) monolayers in spin nanodevices.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Zixin He
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Chuchu Gao
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Yanyan Tao
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Feng Liang
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Guannan Li
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Benling Gao
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Guang Song
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
- Department of Physics, Nanjing University 22 Hankou Road Nanjing 210093 China
| |
Collapse
|
5
|
Wu Z, Liu S, Hao Z, Liu X. MXene Contact Engineering for Printed Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207174. [PMID: 37096843 PMCID: PMC10323642 DOI: 10.1002/advs.202207174] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Indexed: 05/03/2023]
Abstract
MXenes emerging as an amazing class of 2D layered materials, have drawn great attention in the past decade. Recent progress suggest that MXene-based materials have been widely explored as conductive electrodes for printed electronics, including electronic and optoelectronic devices, sensors, and energy storage systems. Here, the critical factors impacting device performance are comprehensively interpreted from the viewpoint of contact engineering, thereby giving a deep understanding of surface microstructures, contact defects, and energy level matching as well as their interaction principles. This review also summarizes the existing challenges of MXene inks and the related printing techniques, aiming at inspiring researchers to develop novel large-area and high-resolution printing integration methods. Moreover, to effectually tune the states of contact interface and meet the urgent demands of printed electronics, the significance of MXene contact engineering in reducing defects, matching energy levels, and regulating performance is highlighted. Finally, the printed electronics constructed by the collaborative combination of the printing process and contact engineering are discussed.
Collapse
Affiliation(s)
- Zhiyun Wu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| | - Shuiren Liu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| | - Zijuan Hao
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
- Henan Innovation Center for Functional Polymer Membrane MaterialsXinxiang453000P. R. China
| | - Xuying Liu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
6
|
García-Romeral N, Morales-García Á, Viñes F, Moreira IDR, Illas F. Theoretical Analysis of Magnetic Coupling in the Ti 2C Bare MXene. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:3706-3714. [PMID: 36865991 PMCID: PMC9969871 DOI: 10.1021/acs.jpcc.2c07609] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/26/2023] [Indexed: 06/13/2023]
Abstract
The nature of the electronic ground state of the Ti2C MXene is unambiguously determined by making use of density functional theory-based calculations including hybrid functionals together with a stringent computational setup providing numerically converged results up to 1 meV. All the explored density functionals (i.e., PBE, PBE0, and HSE06) consistently predict that the Ti2C MXene has a magnetic ground state corresponding to antiferromagnetic (AFM)-coupled ferromagnetic (FM) layers. A spin model, with one unpaired electron per Ti center, consistent with the nature of the chemical bond emerging from the calculations, is presented in which the relevant magnetic coupling constants are extracted from total energy differences of the involved magnetic solutions using an appropriate mapping approach. The use of different density functionals enables us to define a realistic range for the magnitude of each of the magnetic coupling constants. The intralayer FM interaction is the dominant term, but the other two AFM interlayer couplings are noticeable and cannot be neglected. Thus, the spin model cannot be reduced to include nearest-neighbor interactions only. The Néel temperature is roughly estimated to be in the 220 ± 30 K, suggesting that this material can be used in practical applications in spintronics and related fields.
Collapse
|
7
|
Yu C, Li X, Li X, Yang J. High Curie Temperature and Intrinsic Ferromagnetic Half-Metallicity in Mn 2X 3 (X = S, Se, Te) Nanosheets. J Phys Chem Lett 2021; 12:11790-11794. [PMID: 34860522 DOI: 10.1021/acs.jpclett.1c03444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) intrinsic half-metallic materials with room-temperature ferromagnetism, sizable magnetic anisotropy energy (MAE), and wide half-metallic gap are excellent candidates for pure spin generation, injection, and transport in nanospintronic applications. However, until now, such 2D half metallicity has been rarely observed in experiment. In this work, by using first-principles calculations, we design a series of such materials, namely, Mn2X3 (X = S, Se, Te) nanosheets, which could be obtained by controlling the thickness of synthesized α-MnX(111) nanofilm to a quintuple X-Mn-X-Mn-X layer. All these nanosheets are dynamically and thermally stable. Electronic and magnetic studies reveal they are intrinsic half metals with high Curie temperatures between 718 and 820 K, sizable MAEs with -1.843 meV/Mn for Mn2Te3 nanosheet, and wide half-metallic gaps from 1.55 to 1.94 eV. Above all, the outstanding features of Mn2X3 nanosheets make them promising in fabricating nanospintronic devices working at room temperature.
Collapse
Affiliation(s)
- Cuiju Yu
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangyang Li
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingxing Li
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Li B, Zhou B, Qu Z, Song Q, Jiang Z. Theoretical study on Fe2C MXene as electrode material for secondary battery. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Zhou F, Liu Y, Kuang M, Wang P, Wang J, Yang T, Wang X, Cheng Z, Zhang G. Time-reversal-breaking Weyl nodal lines in two-dimensional A 3C 2 (A = Ti, Zr, and Hf) intrinsically ferromagnetic materials with high Curie temperature. NANOSCALE 2021; 13:8235-8241. [PMID: 33885113 DOI: 10.1039/d1nr00139f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most materials that feature nontrivial band topology are spin-degenerate and three dimensional, strongly restricting them from application in spintronic nanodevices. Hence, two-dimensional (2D) intrinsically spin-polarized systems with rich topological elements are still in extreme scarcity. Here, 2D A3C2 (A = Ti, Zr, and Hf) materials with the P6[combining macron]m2 type structure are reported as new ferromagnetic materials with intrinsic magnetism and good stability. Unlike the Weyl nodal lines existing in nonmagnetic 2D systems, A3C2 hosts time-reversal-breaking Weyl nodal rings (two Γ-centered, one K-centered, and one K'-centered) without spin-orbit coupling (SOC). These nodal rings still remained under SOC with magnetization along the z direction (easy magnetization axis). More interestingly, the Curie temperatures (TC) of A3C2 were determined based on the Monte Carlo simulation. Ti3C2 features an extraordinary TC (above 800 K), and those of Zr3C2 and Hf3C2 are above room temperature. Therefore, A3C2 materials are excellent platforms to study magnetic Weyl nodal lines in high TC ferromagnetic 2D materials.
Collapse
Affiliation(s)
- Feng Zhou
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hu Y, Jin S, Luo ZF, Zeng HH, Wang JH, Fan XL. Conversation from antiferromagnetic MnBr 2 to ferromagnetic Mn 3Br 8 monolayer with large MAE. NANOSCALE RESEARCH LETTERS 2021; 16:72. [PMID: 33914179 PMCID: PMC8085181 DOI: 10.1186/s11671-021-03523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
A pressing need in low energy spintronics is two-dimensional (2D) ferromagnets with Curie temperature above the liquid-nitrogen temperature (77 K), and sizeable magnetic anisotropy. We studied Mn3Br8 monolayer which is obtained via inducing Mn vacancy at 1/4 population in MnBr2 monolayer. Such defective configuration is designed to change the coordination structure of the Mn-d5 and achieve ferromagnetism with sizeable magnetic anisotropy energy (MAE). Our calculations show that Mn3Br8 monolayer is a ferromagnetic (FM) half-metal with Curie temperature of 130 K, large MAE of - 2.33 meV per formula unit, and atomic magnetic moment of 13/3μB for the Mn atom. Additionally, Mn3Br8 monolayer maintains to be FM under small biaxial strain, whose Curie temperature under 5% compressive strain is 160 K. Additionally, both biaxial strain and carrier doping make the MAE increases, which mainly contributed by the magneto-crystalline anisotropy energy (MCE). Our designed defective structure of MnBr2 monolayer provides a simple but effective way to achieve ferromagnetism with large MAE in 2D materials.
Collapse
Affiliation(s)
- Y. Hu
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi’an, 710072 Shaanxi China
| | - S. Jin
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, 127 YouYi Western Road, Xi’an, 710072 Shaanxi China
| | - Z. F. Luo
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi’an, 710072 Shaanxi China
| | - H. H. Zeng
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi’an, 710072 Shaanxi China
| | - J. H. Wang
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi’an, 710072 Shaanxi China
| | - X. L. Fan
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi’an, 710072 Shaanxi China
| |
Collapse
|