1
|
Chen G, Yu J, Wu L, Ji X, Xu J, Wang C, Ma S, Miao Q, Wang L, Wang C, Lewis SE, Yue Y, Sun Z, Liu Y, Tang B, James TD. Fluorescent small molecule donors. Chem Soc Rev 2024; 53:6345-6398. [PMID: 38742651 PMCID: PMC11181996 DOI: 10.1039/d3cs00124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Indexed: 05/16/2024]
Abstract
Small molecule donors (SMDs) play subtle roles in the signaling mechanism and disease treatments. While many excellent SMDs have been developed, dosage control, targeted delivery, spatiotemporal feedback, as well as the efficiency evaluation of small molecules are still key challenges. Accordingly, fluorescent small molecule donors (FSMDs) have emerged to meet these challenges. FSMDs enable controllable release and non-invasive real-time monitoring, providing significant advantages for drug development and clinical diagnosis. Integration of FSMDs with chemotherapeutic, photodynamic or photothermal properties can take full advantage of each mode to enhance therapeutic efficacy. Given the remarkable properties and the thriving development of FSMDs, we believe a review is needed to summarize the design, triggering strategies and tracking mechanisms of FSMDs. With this review, we compiled FSMDs for most small molecules (nitric oxide, carbon monoxide, hydrogen sulfide, sulfur dioxide, reactive oxygen species and formaldehyde), and discuss recent progress concerning their molecular design, structural classification, mechanisms of generation, triggered release, structure-activity relationships, and the fluorescence response mechanism. Firstly, from the large number of fluorescent small molecular donors available, we have organized the common structures for producing different types of small molecules, providing a general strategy for the development of FSMDs. Secondly, we have classified FSMDs in terms of the respective donor types and fluorophore structures. Thirdly, we discuss the mechanisms and factors associated with the controlled release of small molecules and the regulation of the fluorescence responses, from which universal guidelines for optical properties and structure rearrangement were established, mainly involving light-controlled, enzyme-activated, reactive oxygen species-triggered, biothiol-triggered, single-electron reduction, click chemistry, and other triggering mechanisms. Fourthly, representative applications of FSMDs for trackable release, and evaluation monitoring, as well as for visible in vivo treatment are outlined, to illustrate the potential of FSMDs in drug screening and precision medicine. Finally, we discuss the opportunities and remaining challenges for the development of FSMDs for practical and clinical applications, which we anticipate will stimulate the attention of researchers in the diverse fields of chemistry, pharmacology, chemical biology and clinical chemistry. With this review, we hope to impart new understanding thereby enabling the rapid development of the next generation of FSMDs.
Collapse
Affiliation(s)
- Guang Chen
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Jing Yu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Xinrui Ji
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jie Xu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chao Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Siyue Ma
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Qing Miao
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Linlin Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chen Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Yanfeng Yue
- Department of Chemistry, Delaware State University, Dover, DE, 19901, USA.
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Yuxia Liu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Sun Y, Neary WJ, Huang X, Kouznetsova TB, Ouchi T, Kevlishvili I, Wang K, Chen Y, Kulik HJ, Craig SL, Moore JS. A Thermally Stable SO 2-Releasing Mechanophore: Facile Activation, Single-Event Spectroscopy, and Molecular Dynamic Simulations. J Am Chem Soc 2024; 146:10943-10952. [PMID: 38581383 DOI: 10.1021/jacs.4c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Polymers that release small molecules in response to mechanical force are promising candidates as next-generation on-demand delivery systems. Despite advancements in the development of mechanophores for releasing diverse payloads through careful molecular design, the availability of scaffolds capable of discharging biomedically significant cargos in substantial quantities remains scarce. In this report, we detail a nonscissile mechanophore built from an 8-thiabicyclo[3.2.1]octane 8,8-dioxide (TBO) motif that releases one equivalent of sulfur dioxide (SO2) from each repeat unit. The TBO mechanophore exhibits high thermal stability but is activated mechanochemically using solution ultrasonication in either organic solvent or aqueous media with up to 63% efficiency, equating to 206 molecules of SO2 released per 143.3 kDa chain. We quantified the mechanochemical reactivity of TBO by single-molecule force spectroscopy and resolved its single-event activation. The force-coupled rate constant for TBO opening reaches ∼9.0 s-1 at ∼1520 pN, and each reaction of a single TBO domain releases a stored length of ∼0.68 nm. We investigated the mechanism of TBO activation using ab initio steered molecular dynamic simulations and rationalized the observed stereoselectivity. These comprehensive studies of the TBO mechanophore provide a mechanically coupled mechanism of multi-SO2 release from one polymer chain, facilitating the translation of polymer mechanochemistry to potential biomedical applications.
Collapse
Affiliation(s)
- Yunyan Sun
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - William J Neary
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiao Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tatiana B Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tetsu Ouchi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kecheng Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yingying Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Heather J Kulik
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
He P, Ren X, Zhang Y, Tang B, Xiao C. Recent advances in sulfur dioxide releasing nanoplatforms for cancer therapy. Acta Biomater 2024; 174:91-103. [PMID: 38092251 DOI: 10.1016/j.actbio.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Sulfur dioxide (SO2), long considered to be a harmful atmospheric pollutant, has recently been posited as the fourth gasotransmitter, as it is produced endogenously in mammals and has important pathophysiological effects. The field of tumor therapy has witnessed a paradigm shift with the emergence of SO2-based gas therapy. This has been possible because SO2 is a potent glutathione consumer that can promote the production of reactive oxygen species, eventually leading to oxidative-stress-induced cancer cell death. Nevertheless, this therapeutic gas cannot be directly administrated in gaseous form. Thus, various nano formulations incorporating SO2 donors or prodrugs capable of storing and releasing SO2 have been developed in an attempt to achieve active/passive intratumoral accumulation and SO2 release in the tumor microenvironment. In this review article, the advances over the past decade in nanoplatforms incorporating sulfur SO2 prodrugs to provide controlled release of SO2 for cancer therapy are summarized. We first describe the synthesis of polypeptide SO2 prodrugs to overcome multiple drug resistance that was pioneered by our group, followed by other macromolecular SO2 prodrug structures that self-assemble into nanoparticles for tumor therapy. Second, we describe nanoplatforms composed of various small-molecule SO2 donors with endogenous or exogenous stimuli responsiveness, including thiol activated, acid-sensitive, and ultraviolet or near-infrared light-responsive SO2 donors, which have been used for tumor inhibition. Combinations of SO2 gas therapy with photodynamic therapy, chemotherapy, photothermal therapy, sonodynamic therapy, and nanocatalytic tumor therapy are also presented. Finally, we discuss the current limitations and challenges and the future outlook for SO2-based gas therapy. STATEMENT OF SIGNIFICANCE: Gas therapy is attracting increasing attention in the scientific community because it is a highly promising strategy against cancer owing to its inherent biosafety and avoidance of drug resistance. Sulfur dioxide (SO2) is recently found to be produced endogenously in mammals with important pathophysiological effects. This review summarizes recent advances in SO2 releasing nanosystems for cancer therapy, including polymeric prodrugs, endogenous or exogenous stimulus-activated SO2 donors delivered by nanoplatform and combination therapy strategies.
Collapse
Affiliation(s)
- Pan He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China.
| | - Xiaoyue Ren
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Bingtong Tang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|
4
|
Dai M, Yang YJ, Sarkar S, Ahn KH. Strategies to convert organic fluorophores into red/near-infrared emitting analogues and their utilization in bioimaging probes. Chem Soc Rev 2023; 52:6344-6358. [PMID: 37608780 DOI: 10.1039/d3cs00475a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Organic fluorophores aided by current microscopy imaging modalities are essential for studying biological systems. Recently, red/near-infrared emitting fluorophores have attracted great research efforts, as they enable bioimaging applications with reduced autofluorescence interference and light scattering, two significant obstacles for deep-tissue imaging, as well as reduced photodamage and photobleaching. Herein, we analyzed the current strategies to convert key organic fluorophores bearing xanthene, coumarin, and naphthalene cores into longer wavelength-emitting derivatives by focussing on their effectiveness and limitations. Together, we introduced typical examples of how such fluorophores can be used to develop molecular probes for biological analytes, along with key sensing features. Finally, we listed several critical issues to be considered in developing new fluorophores.
Collapse
Affiliation(s)
- Mingchong Dai
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, 97201, USA.
| | - Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
5
|
Nakamura K, Kumagai Y, Kobayashi A, Suzuki M, Yoshida S. Facile synthesis of sulfinate esters from aryl iodides via direct oxidation of thioesters. Org Biomol Chem 2023; 21:6886-6891. [PMID: 37602371 DOI: 10.1039/d3ob01108a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
A practical method to synthesize sulfinate esters from aryl iodides is disclosed. Direct oxidation of thioesters prepared by copper-catalyzed C-S formation of aryl iodides realized the efficient synthesis of sulfinate esters. Due to the good accessibility of aryl iodides, a wide variety of sulfinate esters were prepared from easily available starting materials such as carboxylic acids and anilines.
Collapse
Affiliation(s)
- Keisuke Nakamura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Yukiko Kumagai
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Akihiro Kobayashi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Minori Suzuki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
6
|
Bremner JB. An Update Review of Approaches to Multiple Action-Based Antibacterials. Antibiotics (Basel) 2023; 12:antibiotics12050865. [PMID: 37237768 DOI: 10.3390/antibiotics12050865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Many approaches are being pursued to address the major global health challenge posed by the increasing resistance of pathogenic bacteria to antibacterial agents. One of the promising approaches being investigated includes the design and development of multiple action-based small-molecule antibacterials. Aspects of this broad area have been reviewed previously, and recent developments are addressed in this update review covering the literature mainly over the past three years. Considerations encompassing drug combinations, single-molecule hybrids and prodrugs are summarised in regard to the intentional design and development of multiple-action agents with a focus on potential triple or greater activities in bacteria. The hope for such single agents or combinations of single agents is that resistance development will be significantly hindered, and they may be useful in tackling bacterial disease caused by both resistant and non-resistant bacteria.
Collapse
Affiliation(s)
- John B Bremner
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
7
|
Antibacterial gas therapy: Strategies, advances, and prospects. Bioact Mater 2023; 23:129-155. [DOI: 10.1016/j.bioactmat.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
|
8
|
Xiong H, Xu Y, Kim B, Rha H, Zhang B, Li M, Yang GF, Kim JS. Photo-controllable biochemistry: Exploiting the photocages in phototherapeutic window. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
Ji X, Zhong Z. External stimuli-responsive gasotransmitter prodrugs: Chemistry and spatiotemporal release. J Control Release 2022; 351:81-101. [PMID: 36116579 DOI: 10.1016/j.jconrel.2022.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Gasotransmitters like nitric oxide, carbon monoxide, and hydrogen sulfide with unique pleiotropic pharmacological effects in mammals are an emerging therapeutic modality for different human diseases including cancer, infection, ischemia-reperfusion injuries, and inflammation; however, their clinical translation is hampered by the lack of a reliable delivery form, which delivers such gasotransmitters to the action site with precisely controlled dosage. The external stimuli-responsive prodrug strategy has shown tremendous potential in developing gasotransmitter prodrugs, which affords precise temporospatial control and better dose control compared with endogenous stimuli-sensitive prodrugs. The promising external stimuli employed for gasotransmitter activation range from photo, ultrasound, and bioorthogonal click chemistry to exogenous enzymes. Herein, we highlight the recent development of external stimuli-mediated decaging chemistry for the temporospatial delivery of gasotransmitters including nitric oxide, carbon monoxide, hydrogen sulfide and sulfur dioxide, and discuss the pros and cons of different designs.
Collapse
Affiliation(s)
- Xingyue Ji
- College of Pharmaceutical Sciences, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| | - Zhiyuan Zhong
- College of Pharmaceutical Sciences, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
10
|
Dillon KM, Matson JB. A Review of Chemical Tools for Studying Small Molecule Persulfides: Detection and Delivery. ACS Chem Biol 2021; 16:1128-1141. [PMID: 34114796 DOI: 10.1021/acschembio.1c00255] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) has gained significant attention as a potent bioregulator in the redox metabolome, but it is just one of many reactive sulfur species (RSS). Recently, small molecule persulfides (structure RSSH) have emerged as RSS of particular interest due to their enhanced antioxidant abilities compared to H2S and their ability to directly convert protein thiols into protein persulfides, suggesting that persulfides may have distinct physiological functions from H2S. However, persulfides exhibit instability and cross-reactivity that hampers the elucidation of their precise biological roles. As such, chemists have designed chemical tools and techniques to facilitate the study of persulfides under various conditions. These molecules and methods include persulfide trapping reagents and sensors, as well as compounds that degrade in response to various triggers to release persulfides, termed persulfide donors. There now exist a variety of persulfide donor classes, some of which possess tissue-targeting capabilities designed to mimic localized endogenous production of RSS. This Review briefly covers the physicochemical properties of persulfides, the endogenous production of small molecule persulfides, and their reactions with protein thiols and other reactive species. These introductory sections are followed by a discussion of chemical tools used in persulfide chemical biology, with critical analysis of recent advancements in the field and commentary on potential directions for future research.
Collapse
Affiliation(s)
- Kearsley M. Dillon
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B. Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
11
|
Sikder A, Chaudhuri A, Mondal S, Singh NDP. Recent Advances on Stimuli-Responsive Combination Therapy against Multidrug-Resistant Bacteria and Biofilm. ACS APPLIED BIO MATERIALS 2021; 4:4667-4683. [PMID: 35007019 DOI: 10.1021/acsabm.1c00150] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The widespread occurrence of infections from multidrug-resistant (MDR) bacteria is a global health problem. It has been amplified over the past few years due to the increase in adaptive traits in bacteria and lack of advanced treatment strategies. Because of the low bioavailability and limited penetration at infected sites, the existing antibiotics often fail to resist bacterial growth. Recently, developed stimuli-responsive drug delivery systems and combinatorial therapeutic systems based on nanoparticles, metal-organic frameworks, hydrogels, and organic chromophores offer the ability to improve the therapeutic efficacy of antibiotics by reducing drug resistance and other side effects. These therapeutic systems have been designed with the relevant chemical and physical properties that respond to specific triggers resulting in spatiotemporal controlled release and site-specific transportability. This review highlights the latest development of single and dual/multistimuli-responsive antibiotic delivery systems for combination therapies to treat MDR bacterial infections and biofilm eradication.
Collapse
Affiliation(s)
- Antara Sikder
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 West Bengal, India
| | - Amrita Chaudhuri
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 West Bengal, India
| | - Saugat Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 West Bengal, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 West Bengal, India
| |
Collapse
|
12
|
Dillon KM, Carrazzone RJ, Wang Y, Powell CR, Matson JB. Polymeric persulfide prodrugs: Mitigating oxidative stress through controlled delivery of reactive sulfur species. ACS Macro Lett 2020; 9:606-612. [PMID: 33194315 DOI: 10.1021/acsmacrolett.0c00118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Related biologically to the known gasotransmitter hydrogen sulfide (H2S), persulfides (R-SSH) have recently been recognized as native signaling compounds and redox regulators in their own right. Reported here is the synthesis, characterization, and in vitro evaluation of a small molecule persulfide donor and its polymeric counterpart, both of which release N-acetyl cysteine persulfide (NAC-SSH) in response to esterases. The donors, termed EDP-NAC and poly(EDP-NAC), underwent controlled decomposition in response to porcine liver esterase, resulting in pseudo-first-order release half-lives of 1.6 h ± 0.3 h and 36.0 h ± 0.6 h, respectively. In cell experiments, slow-releasing poly(EDP-NAC) rescued H9C2 cardiomyocytes more effectively than EDP-NAC when cells were treated with 5-fluorouricil (5-FU), which induces sustained production of ROS. Neither EDP-NAC nor poly(EDP-NAC) rescued MCF-7 breast cancer cells from 5-FU-induced oxidative stress, suggesting that polymeric persulfide donors could be used as adjuvants to reduce the deleterious cardiotoxic effects of many chemotherapeutics.
Collapse
Affiliation(s)
- Kearsley M. Dillon
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ryan J. Carrazzone
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yin Wang
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chadwick R. Powell
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B. Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
13
|
Malwal SR, Pardeshi KA, Chakrapani H. Synthesis of Cyclic Sulfite Diesters and their Evaluation as Sulfur Dioxide (SO 2 ) Donors. Chembiochem 2020; 21:1201-1205. [PMID: 31709695 DOI: 10.1002/cbic.201900614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/10/2019] [Indexed: 12/22/2022]
Abstract
Although sulfur dioxide (SO2 ) finds widespread use in the food industry as its hydrated sulfite form, a number of aspects of SO2 biology remain to be completely understood. Of the tools available for intracellular enhancement of SO2 levels, most suffer from poor cell permeability and a lack of control over SO2 release. We report 1,2-cyclic sulfite diesters as a new class of reliable SO2 donors that dissociate in buffer through nucleophilic displacement to produce SO2 with tunable release profiles. We provide data in support of the suitability of these SO2 donors to enhance intracellular SO2 levels more efficiently than sodium bisulfite, the most commonly used SO2 donor for cellular studies.
Collapse
Affiliation(s)
- Satish R Malwal
- Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan Pune, 411 008, Maharashtra, India.,Present address: Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kundansingh A Pardeshi
- Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan Pune, 411 008, Maharashtra, India
| | - Harinath Chakrapani
- Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan Pune, 411 008, Maharashtra, India
| |
Collapse
|
14
|
Chaudhuri A, Venkatesh Y, Jena BC, Behara KK, Mandal M, Singh NDP. Real-time monitoring of a photoactivated hydrogen persulfide donor for biological entities. Org Biomol Chem 2020; 17:8800-8805. [PMID: 31560347 DOI: 10.1039/c9ob01982k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hydrogen persulfide (H2S2) plays an important role in sulfur-based redox signaling mechanisms. Herein, we developed a visible light activated ESIPT based H2S2 donor using a p-hydroxyphenacyl phototrigger. The unique feature of the designed H2S2 donor system is the ability to monitor the H2S2 release in real time through a non-invasive fluorescence color change approach, with the color changing from green to blue. Next, we demonstrated the detection and quantification of H2S2 using a fluorescein based "turn-on" fluorescent probe. Furthermore, in vitro studies of the designed H2S2 donor demonstrated the real-time monitored H2S2 release and cytoprotective ability in the highly oxidizing cellular environment of MDA-MB-468 cells.
Collapse
Affiliation(s)
- Amrita Chaudhuri
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 Kharagpur, West Bengal, India.
| | | | | | | | | | | |
Collapse
|
15
|
Photolysis of dimethoxynitrobenzyl-"caged" acids yields fluorescent products. Sci Rep 2019; 9:13421. [PMID: 31530869 PMCID: PMC6748988 DOI: 10.1038/s41598-019-49845-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/28/2019] [Indexed: 01/22/2023] Open
Abstract
Carboxylic acids conjugated with 4,5-dimethoxy-2-nitrobenzyl photoremovable protecting group are well known and widely used for biological studies. In this paper, we study the photolysis of likewise “caged” acetic, caprylic and arachidonic acids. Unexpectedly, we observed huge growth of fluorescence emission at ~430 nm during photolysis. Following further UV irradiation, a product with fluorescence at longer wavelength was formed (470 nm excitation / ~500–600 nm emission). While it may be used to monitor the “uncaging”, these fluorescent products may interfere with widespread dyes such as fluorescein in biomedical experiments. This effect might be negligible if the photolysis products dissolve in the medium. On the other hand, we observed that arachidonic and caprylic acids derivatives self-organize in emulsion droplets in water environment due to long lipophilic chains. Illumination of droplets by UV rapidly induces orange fluorescence excited by 488 nm light. This fluorescence turn-on was fast (~0.1 s) and apparently caused by the accumulation of water-insoluble fluorescent residuals inside droplets. These self-organized lipophilic structures with fluorescence turn-on capability may be of interest for biomedical and other application. We have identified and hypothesized some compounds which may be responsible for the observed fluorescense.
Collapse
|
16
|
Chaudhuri A, Venkatesh Y, Das J, Gangopadhyay M, Maiti TK, Singh NDP. One- and Two-Photon-Activated Cysteine Persulfide Donors for Biological Targeting. J Org Chem 2019; 84:11441-11449. [DOI: 10.1021/acs.joc.9b01224] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|