1
|
Horwitz MA, Dürr AB, Afratis K, Chen Z, Soika J, Christensen KE, Fushimi M, Paton RS, Gouverneur V. Regiodivergent Nucleophilic Fluorination under Hydrogen Bonding Catalysis: A Computational and Experimental Study. J Am Chem Soc 2023; 145:9708-9717. [PMID: 37079853 PMCID: PMC10161234 DOI: 10.1021/jacs.3c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The controlled programming of regiochemical outcomes in nucleophilic fluorination reactions with alkali metal fluoride is a problem yet to be solved. Herein, two synergistic approaches exploiting hydrogen bonding catalysis are presented. First, we demonstrate that modulating the charge density of fluoride with a hydrogen-bond donor urea catalyst directly influences the kinetic regioselectivity in the fluorination of dissymmetric aziridinium salts with aryl and ester substituents. Moreover, we report a urea-catalyzed formal dyotropic rearrangement, a thermodynamically controlled regiochemical editing process consisting of C-F bond scission followed by fluoride rebound. These findings offer a route to access enantioenriched fluoroamine regioisomers from a single chloroamine precursor, and more generally, new opportunities in regiodivergent asymmetric (bis)urea-based organocatalysis.
Collapse
Affiliation(s)
- Matthew A Horwitz
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Alexander B Dürr
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Konstantinos Afratis
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Zijun Chen
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Julia Soika
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Kirsten E Christensen
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Makoto Fushimi
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80528, United States
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
2
|
Chen HC, Liu CY, Angamuthu V, Chen WC, Wen CS, Hou DR. Synthesis of Optically Active Organofluorides by Ring Opening of Oxazolidinone-Fused Aziridines. Org Lett 2023; 25:190-194. [PMID: 36576235 DOI: 10.1021/acs.orglett.2c04042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A general method for synthesizing optically active, primary, secondary, and tertiary organofluorides was developed. This chiral pool synthesis utilized the skeleton of arabinose to generate diastereomerically pure 2-oxazolidinone-fused aziridines, which underwent ring opening with a fluoride anion. The adducts, polyoxygenated organofluorides, were useful precursors to various fluorinated compounds, such as fluorinated amino acids.
Collapse
Affiliation(s)
- Hung-Che Chen
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, Taiwan 32001
| | - Chi-Yun Liu
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, Taiwan 32001
| | - Venkatachalam Angamuthu
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, Taiwan 32001
| | - Wei-Chen Chen
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, Taiwan 32001
| | - Chi-Sheng Wen
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, Taiwan 32001
| | - Duen-Ren Hou
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, Taiwan 32001
| |
Collapse
|
3
|
Tayama E, Kawai K. Synthesis of tertiary alkyl fluorides and chlorides by site-selective nucleophilic ring-opening reaction of α-aryl azetidinium salts. RSC Adv 2021; 11:39607-39618. [PMID: 35492462 PMCID: PMC9044468 DOI: 10.1039/d1ra08706a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
Site-selective nucleophilic ring-opening reactions of 2-arylazetidine-2-carboxylic acid ester-derived tetraalkyl ammonium salts 2 with tetrabutylammonium halides (Bu4NX) to give tertiary alkyl halides are successfully demonstrated. For example, a nucleophilic ring-opening reaction of 2-(o-tolyl) derivative 2a with 1.2 equivalents of tetrabutylammonium fluoride (Bu4NF) in THF at 60 °C preferentially proceeded at a more substituted carbon atom (2-position) compared to a less-substituted carbon atom (4-position) and afforded tert-butyl 4-(dimethylamino)-2-fluoro-2-(o-tolyl)butanoate 3aa in 71% yield as the corresponding tertiary alkyl fluoride. This result was applied to synthesize optically active organofluorine compounds starting from commercially available (R)-1-phenylethylamine. Site-selective nucleophilic ring-opening of 2 with Bu4NX proceeded at a much-substituted 2-position preferentially and produced tertiary alkyl halides 3.![]()
Collapse
Affiliation(s)
- Eiji Tayama
- Department of Chemistry, Faculty of Science, Niigata University Niigata 950-2181 Japan
| | - Kohei Kawai
- Graduate School of Science and Technology, Niigata University Niigata 950-2181 Japan
| |
Collapse
|
4
|
Mughal H, Szostak M. Recent advances in the synthesis and reactivity of azetidines: strain-driven character of the four-membered heterocycle. Org Biomol Chem 2021; 19:3274-3286. [PMID: 33899862 DOI: 10.1039/d1ob00061f] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Azetidines represent one of the most important four-membered heterocycles used in organic synthesis and medicinal chemistry. The reactivity of azetidines is driven by a considerable ring strain, while at the same the ring is significantly more stable than that of related aziridines, which translates into both facile handling and unique reactivity that can be triggered under appropriate reaction conditions. Recently, remarkable advances in the chemistry and reactivity of azetidines have been reported. In this review, we provide an overview of the synthesis, reactivity and application of azetidines that have been published in the last years with a focus on the most recent advances, trends and future directions. The review is organized by the methods of synthesis of azetidines and the reaction type used for functionalization of azetidines. Finally, recent examples of using azetidines as motifs in drug discovery, polymerization and chiral templates are discussed.
Collapse
Affiliation(s)
- Haseeb Mughal
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| |
Collapse
|
5
|
Ikeda A, Capellan A, Welch JT. The secondary structure of a heptapeptide containing trifluoromethyl-λ 6-tetrafluorosulfanyl substituted amino acids. Org Biomol Chem 2019; 17:8079-8082. [PMID: 31454017 DOI: 10.1039/c9ob01797f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Site specific introduction of the polar hydrophobic trifluoromethyl-λ6-tetrafluorosulfanyl (CF3SF4) group can effectively control the secondary structure of a heptapeptide, the minimum repeat unit of an α-helix. The structural influence of CF3SF4-containing amino acid on the heptapeptide was established using NMR methods.
Collapse
Affiliation(s)
- Akari Ikeda
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA.
| | - Aimée Capellan
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA.
| | - John T Welch
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA.
| |
Collapse
|