1
|
Xue D, Xu M, Madden MD, Lian X, Older EA, Pulliam C, Hui Y, Shang Z, Gupta G, Raja MK, Wang Y, Sardi A, Long Y, Chen H, Fan D, Bugni TS, Testerman TL, Wu Q, Li J. Discovery of a Chimeric Polyketide Family as Cancer Immunogenic Chemotherapeutic Leads. J Am Chem Soc 2025; 147:265-277. [PMID: 39731542 DOI: 10.1021/jacs.4c09582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Discovery of cancer immunogenic chemotherapeutics represents an emerging, highly promising direction for cancer treatment that uses a chemical drug to achieve the efficacy of both chemotherapy and immunotherapy. Herein, we report a high-throughput screening platform and the subsequent discovery of a new class of cancer immunogenic chemotherapeutic leads. Our platform integrates informatics-based activity metabolomics for the rapid identification of microbial natural products with both novel structures and potent activities. Additionally, we demonstrate the use of microcrystal electron diffraction (MicroED) for direct structure elucidation of lead compounds from partially purified mixtures. Using this strategy to screen geographically and phylogenetically diverse microbial metabolites against pseudomyxoma peritonei, a rare and severe cancer, we discovered a new class of leads, aspercyclicins. The aspercyclicins feature an unprecedented tightly packed polycyclic polyketide scaffold that comprises continuous fused, bridged, and spiro rings. The biogenesis of aspercyclicins involves two distinct biosynthetic pathways, leading to formation of chimeric compounds that cannot be predicted by bottom-up approaches mining natural product biosynthetic genes. With comparable potency to some clinically used anticancer drugs, aspercyclicins are active against multiple cancer cell types by inducing immunogenic cell death (ICD), including the release of damage-associated molecular patterns and subsequent phagocytosis of cancer cells. The broad-spectrum ICD-inducing activity of aspercyclicins, combined with their low toxicity to normal cells, represents a new class of potential cancer immunogenic chemotherapeutics and, particularly, the first drug lead for pseudomyxoma peritonei treatment.
Collapse
Affiliation(s)
- Dan Xue
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mingming Xu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Michael D Madden
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Xiaoying Lian
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ethan A Older
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Conor Pulliam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Yvonne Hui
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Zhuo Shang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gourab Gupta
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Manikanda K Raja
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Yuzhen Wang
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Armando Sardi
- Department of Surgical Oncology, The Institute for Cancer Care at Mercy, Mercy Medical Center, Baltimore, Maryland 21202, United States
| | - Yaoling Long
- Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, South Carolina 29117, United States
| | - Hexin Chen
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Tim S Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Traci L Testerman
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Qihao Wu
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
2
|
Xue D, Xu M, Madden MD, Lian X, Older EA, Pulliam C, Hui Y, Shang Z, Gupta G, Raja MK, Wang Y, Sardi A, Long Y, Chen H, Fan D, Bugni TS, Testerman TL, Wu Q, Li J. Discovery of A Chimeric Polyketide Family as Cancer Immunogenic Chemotherapeutic Leads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622009. [PMID: 39574732 PMCID: PMC11580922 DOI: 10.1101/2024.11.05.622009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Discovery of cancer immunogenic chemotherapeutics represents an emerging, highly promising direction for cancer treatment that uses a chemical drug to achieve the efficacy of both chemotherapy and immunotherapy. Herein we report a high-throughput screening platform and the subsequent discovery of a new class of cancer immunogenic chemotherapeutic leads. Our platform integrates informatics-based activity metabolomics for rapid identification of microbial natural products with both novel structures and potent activities. Additionally, we demonstrate the use of microcrystal electron diffraction (MicroED) for direct structure elucidation of the lead compounds from partially purified mixtures. Using this strategy to screen geographically and phylogenetically diverse microbial metabolites against pseudomyxoma peritonei, a rare and severe cancer, we discovered a new class of leads, aspercyclicins. The aspercyclicins feature an unprecedented tightly packed polycyclic polyketide scaffold that comprises continuous fused, bridged, and spiro rings. The biogenesis of aspercyclicins involves two distinct biosynthetic pathways, leading to formation of chimeric compounds that cannot be predicted by bottom-up approaches mining natural products biosynthetic genes. With comparable potency to some clinically used anticancer drugs, aspercyclicins are active against multiple cancer cell types by inducing immunogenic cell death (ICD), including the release of damage-associated molecular patterns and subsequent phagocytosis of cancer cells. The broad-spectrum ICD-inducing activity of aspercyclicins, combined with their low toxicity to normal cells, represents a new class of potential cancer immunogenic chemotherapeutics and particularly the first drug lead for pseudomyxoma peritonei treatment.
Collapse
|
3
|
Hou A, Dickschat JS. Labelling studies in the biosynthesis of polyketides and non-ribosomal peptides. Nat Prod Rep 2023; 40:470-499. [PMID: 36484402 DOI: 10.1039/d2np00071g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2015 to 2022In this review, we discuss the recent advances in the use of isotopically labelled compounds to investigate the biosynthesis of polyketides, non-ribosomally synthesised peptides, and their hybrids. Also, we highlight the use of isotopes in the elucidation of their structures and investigation of enzyme mechanisms. The biosynthetic pathways of selected examples are presented in detail to reveal the principles of the discussed labelling experiments. The presented examples demonstrate that the application of isotopically labelled compounds is still the state of the art and can provide valuable information for the biosynthesis of natural products.
Collapse
Affiliation(s)
- Anwei Hou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, West 7th Avenue No. 32, 300308 Tianjin, China.,Institute of Microbiology, Jiangxi Academy of Sciences, Changdong Road No. 7777, 330096 Nanchang, China
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
4
|
Devi A, Seth R, Masand M, Singh G, Holkar A, Sharma S, Singh A, Sharma RK. Spatial Genomic Resource Reveals Molecular Insights into Key Bioactive-Metabolite Biosynthesis in Endangered Angelica glauca Edgew. Int J Mol Sci 2022; 23:ijms231911064. [PMID: 36232367 PMCID: PMC9569870 DOI: 10.3390/ijms231911064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Angelica glauca Edgew, which is an endangered medicinal and aromatic herb, is a rich source of numerous industrially important bioactive metabolites, including terpenoids, phenolics, and phthalides. Nevertheless, genomic interventions for the sustainable utilization and restoration of its genetic resources are greatly offset due to the scarcity of the genomic resources and key regulators of the underlying specialized metabolism. To unravel the global atlas of the specialized metabolism, the first spatial transcriptome sequencing of the leaf, stem, and root generated 109 million high-quality paired-end reads, assembled de novo into 81,162 unigenes, which exhibit a 61.53% significant homology with the six public protein databases. The organ-specific clustering grouped 1136 differentially expressed unigenes into four subclusters differentially enriched in the leaf, stem, and root tissues. The prediction of the transcriptional-interactome network by integrating enriched gene ontology (GO) and the KEGG metabolic pathways identified the key regulatory unigenes that correspond to terpenoid, flavonoid, and carotenoid biosynthesis in the leaf tissue, followed by the stem and root tissues. Furthermore, the stem and root-specific significant enrichments of phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), and caffeic acid 3-O-methyltransferase (COMT) indicate that phenylalanine mediated the ferulic acid biosynthesis in the stem and root. However, the root-specific expressions of NADPH-dependent alkenal/one oxidoreductase (NADPH-AOR), S-adenosyl-L-methionine-dependent methyltransferases (SDMs), polyketide cyclase (PKC), and CYP72A15 suggest the “root” as the primary site of phthalide biosynthesis. Additionally, the GC-MS and UPLC analyses corresponded to the organ-specific gene expressions, with higher contents of limonene and phthalide compounds in the roots, while there was a higher accumulation of ferulic acid in the stem, followed by in the root and leaf tissues. The first comprehensive genomic resource with an array of candidate genes of the key metabolic pathways can be potentially utilized for the targeted upscaling of aromatic and pharmaceutically important bioactive metabolites. This will also expedite genomic-assisted conservation and breeding strategies for the revival of the endangered A. glauca.
Collapse
Affiliation(s)
- Amna Devi
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
| | - Mamta Masand
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Gopal Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ashlesha Holkar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shikha Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ashok Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Environmental Technology, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Correspondence: or
| |
Collapse
|
5
|
Wang LY, Li WY, Zhou HF, Zhao XY, Li XN, Wu XD, Zhao QS. Spiroligustolides A and B: two pairs of enantiomeric spiro-orthoester-containing phthalide dimers as Cav3.1 calcium channel inhibitors from Ligusticum Chuanxiong Hort. Bioorg Chem 2022; 123:105749. [DOI: 10.1016/j.bioorg.2022.105749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 12/27/2022]
|
6
|
Steffen K, Laborde Q, Gunasekera S, Payne CD, Rosengren KJ, Riesgo A, Göransson U, Cárdenas P. Barrettides: A Peptide Family Specifically Produced by the Deep-Sea Sponge Geodia barretti. JOURNAL OF NATURAL PRODUCTS 2021; 84:3138-3146. [PMID: 34874154 PMCID: PMC8713285 DOI: 10.1021/acs.jnatprod.1c00938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 05/16/2023]
Abstract
Natural product discovery by isolation and structure elucidation is a laborious task often requiring ample quantities of biological starting material and frequently resulting in the rediscovery of previously known compounds. However, peptides are a compound class amenable to an alternative genomic, transcriptomic, and in silico discovery route by similarity searches of known peptide sequences against sequencing data. Based on the sequences of barrettides A and B, we identified five new barrettide sequences (barrettides C-G) predicted from the North Atlantic deep-sea demosponge Geodia barretti (Geodiidae). We synthesized, folded, and investigated one of the newly described barrettides, barrettide C (NVVPCFCVEDETSGAKTCIPDNCDASRGTNP, disulfide connectivity I-IV, II-III). Co-elution experiments of synthetic and sponge-derived barrettide C confirmed its native conformation. NMR spectroscopy and the anti-biofouling activity on larval settlement of the bay barnacle Amphibalanus improvisus (IC50 0.64 μM) show that barrettide C is highly similar to barrettides A and B in both structure and function. Several lines of evidence suggest that barrettides are produced by the sponge itself and not one of its microbial symbionts.
Collapse
Affiliation(s)
- Karin Steffen
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Husargatan 3, 751
23 Uppsala, Sweden
| | - Quentin Laborde
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Husargatan 3, 751
23 Uppsala, Sweden
| | - Sunithi Gunasekera
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Husargatan 3, 751
23 Uppsala, Sweden
| | - Colton D. Payne
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - K. Johan Rosengren
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Ana Riesgo
- Department
of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United
Kingdom
- Department
of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales−CSIC, Calle José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Ulf Göransson
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Husargatan 3, 751
23 Uppsala, Sweden
| | - Paco Cárdenas
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Husargatan 3, 751
23 Uppsala, Sweden
| |
Collapse
|
7
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
8
|
Zheng L, Yang Y, Wang H, Fan A, Zhang L, Li SM. Ustethylin Biosynthesis Implies Phenethyl Derivative Formation in Aspergillus ustus. Org Lett 2020; 22:7837-7841. [DOI: 10.1021/acs.orglett.0c02719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liujuan Zheng
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Yiling Yang
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Haowen Wang
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Aili Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029 Beijing, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources, South China Sea Institute of Oceanology Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| |
Collapse
|
9
|
Narmani A, Teponno RB, Helaly SE, Arzanlou M, Stadler M. Cytotoxic, anti-biofilm and antimicrobial polyketides from the plant associated fungus Chaetosphaeronema achilleae. Fitoterapia 2019; 139:104390. [PMID: 31655088 DOI: 10.1016/j.fitote.2019.104390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 01/08/2023]
Abstract
From extracts of the plant associated fungus Chaetosphaeronema achilleae collected in Iran, a previously unreported isoindolinone named chaetosisoindolinone (1) and a previously undescribed indanone named chaetosindanone (2) were isolated in addition to five known metabolites, 2-(2-acetyl-3,5-dihydroxyphenyl) acetic acid (3), vulculic acid (4), 2-(2-acetyl-3-hydroxy-5-methoxyphenyl)acetic acid (5), curvulin (6), and curvulol (7). Their structures were elucidated on the basis of extensive spectroscopic analysis and high-resolution mass spectrometry. The isolated compounds were tested for their antimicrobial, anti-biofilm, and nematicidal activities. Compound 2 exhibited cytotoxicity against the human breast adenocarcinoma MCF-7 cells with an IC50 value of 1.5 μg/mL. Furthermore, compounds 4 and 7 almost completely inhibited biofilm formation in Staphylococcus aureus at 256 μg/mL. Weak antimicrobial activities were also observed for some of the isolated compounds against Mucor hiemalis, Rhodoturula glutinis, Chromobacterium violaceum, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Abolfazl Narmani
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Rémy Bertrand Teponno
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Soleiman E Helaly
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Department of Chemistry, Faculty of Science, Aswan University, 81528 Aswan, Egypt
| | - Mahdi Arzanlou
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
10
|
New Aromatic Bisabolane Derivatives with Lipid-Reducing Activity from the Marine Sponge Myrmekioderma sp. Mar Drugs 2019; 17:md17060375. [PMID: 31234542 PMCID: PMC6627430 DOI: 10.3390/md17060375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
The previously reported 1-(2,4-dihydroxy-5-methylphenyl)ethan-1-one (1), (1’Z)-2-(1’,5’-dimethylhexa-1’,4’-dieny1)-5-methylbenzene-1,4-diol (2), and 1,8-epoxy-1(6),2,4,7,10-bisaborapentaen-4-ol (5) together with four new structures of aromatic bisabolane-related compounds (3, 4, 6, 7) were isolated from the marine sponge Myrmekioderma sp. Compounds 1, 2, and 5 were identified based on spectral data available in the literature. The structures of the four new compounds were experimentally established by 1D and 2D-NMR and (−)-HRESIMS spectral analysis. Cytotoxic and lipid-reducing activities of the isolated compounds were evaluated. None of the isolated compounds were active against the tested cancer cell lines; however, lipid-reducing activity was found for compounds 2–5 and 7 in the zebrafish Nile red fat metabolism assay. This class of compounds should be further explored for their suitability as possible agents for the treatment of lipid metabolic disorders and obesity.
Collapse
|
11
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as niduterpenoid A from Aspergillus nidulans.
Collapse
|