1
|
Zhang X, Peng C, Jiang J. pH-Controllable Redox Responsive Amphiphilic Viologens for Switchable Emulsions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401651. [PMID: 38660702 DOI: 10.1002/smll.202401651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/12/2024] [Indexed: 04/26/2024]
Abstract
A pH and redox dual responsive amphiphilic viologen is synthesized, which can be reversibly transformed among the zwitterionic (SVa), monovalent anionic (SV+), and divalent anionic (SVH2+) forms upon pH variation, exhibiting pH-controllable redox responsive properties. Switchable Pickering emulsions with different droplet size and viscosity are prepared by the mixture of hydrophilic silica nanoparticles and the viologens (SV+ or SVH2+) at acidic conditions, while such combination yielded an oil-in-dispersion emulsion at neutral pH value. Not only can rapid reversible demulsification/stabilization of the Pickering emulsions be achieved by redox reactions, but the rate of redox-demulsification can also be controlled by pH trigger. The dual-responsive amphiphilic viologens have potential applications in developing intelligent colloid materials and molecular logic systems.
Collapse
Affiliation(s)
- Xinyue Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Chifang Peng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
2
|
Wu Y, Guo K, Zhao J, Duan Q, Wang F, Lu K. Highly sensitive and selective electrochemical detection of clothianidin using reduced graphene oxide-anionic pillar[6]arene composite film. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Duan Q, Xing Y, Guo K. The Detection of Food Additives Using a Fluorescence Indicator Based on 6– p–Toluidinylnaphthalence-2-sulfonate and Cationic Pillar[6]arene. Front Chem 2022; 10:925881. [PMID: 35711954 PMCID: PMC9194816 DOI: 10.3389/fchem.2022.925881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/12/2022] [Indexed: 01/14/2023] Open
Abstract
The current study investigated host-guest complexation in 6-p-toluidinylnaphthalene-2-sulfonate (TNS), a fluorescence probe used to investigate hydrophobic regions that contain the water-soluble cationic pillar[6]arene (CP6). After complexation with CP6, the fluorescence intensity of TNS was significantly increased. The decreases in the fluorescence intensity of the TNS•CP6 complex when phenolic food-additives are added have been used in indicator displacement assays to detect food additives in the water.
Collapse
|
4
|
Wang X, Quan M, Yao H, Pang XY, Ke H, Jiang W. Switchable bifunctional molecular recognition in water using a pH-responsive Endo-functionalized cavity. Nat Commun 2022; 13:2291. [PMID: 35484144 PMCID: PMC9051166 DOI: 10.1038/s41467-022-30012-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
The construction of water-soluble synthetic hosts with a stimuli-responsive endo-functionalized cavity is challenging. These hosts feature a switchable cavity and may bring new properties to the fields of self-assembly, molecular machines, and biomedical sciences. Herein, we report a pair of water-soluble naphthotubes with a pH-responsive endo-functionalized cavity. The inward-directing secondary amine group of the hosts can be protonated and deprotonated. Thus, the hosts have different cavity features at the two states and show drastically different binding preference and selectivity in water. We reveal that the binding difference of the two host states is originated from the differences in charge repulsion, hydrogen bonding and the hydrophobic effects. Moreover, the guest binding can be easily switched in a ternary mixture with two guest molecules by adjusting the pH value of the solution. These pH-responsive hosts may be used for the construction of smart self-assembly systems and water-soluble molecular machines.
Collapse
Affiliation(s)
- Xiaoping Wang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China
| | - Mao Quan
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China
| | - Huan Yao
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China
| | - Xin-Yu Pang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China
| | - Hua Ke
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China.
| |
Collapse
|
5
|
Sun Y, Wang C, Yi F, Li RH, Liang X, He Q, Min X, Hu X. Facile Surface Functionalization of MXene by Pillar[5]arene for Enhanced Electrochemical Performance. Chem Commun (Camb) 2022; 58:3170-3173. [DOI: 10.1039/d1cc05998j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple strategy was used to prepare functional two-dimensional materials via combination of pillar[5]arene (P5) and MXene. Electrochemical results of MXene-P5 exhibits high supramolecular recognition, enrichment capability, and high electrochemical...
Collapse
|
6
|
Duan Q, Wang F, Zhang H, Lu K. pH-Responsive Host-Guest Complexations Between a Water-Soluble Pillar[6]arene Dodecyl-Ammonium Chloride and Aromatic Sulfonic Acids. Front Chem 2020; 8:588201. [PMID: 33195089 PMCID: PMC7533581 DOI: 10.3389/fchem.2020.588201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
In the present work, new host-guest binding motifs based on a water-soluble pillar[6]arene dodecyl-ammonium chloride (CP6) with two aromatic sulfonic acids in aqueous media were fabricated. In accordance with the integrated results of 1H NMR, 2D NOESY, and florescence titration experiments, it was demonstrated that the host-guest binding of CP6 with the two aromatic sulfonic acids in aqueous solution not only has high binding constants but also has pH-responsiveness.
Collapse
Affiliation(s)
- Qunpeng Duan
- Henan International Joint Laboratory of Rare Earth Composite Materials, School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Fei Wang
- Henan International Joint Laboratory of Rare Earth Composite Materials, School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Hongsong Zhang
- Henan International Joint Laboratory of Rare Earth Composite Materials, School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Kui Lu
- Henan International Joint Laboratory of Rare Earth Composite Materials, School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China.,School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, Zhengzhou, China
| |
Collapse
|
7
|
Duan Q, Wang L, Wang F, Zhang H, Lu K. Facile One-Step Electrodeposition Preparation of Cationic Pillar[6]arene-Modified Graphene Films on Glassy Carbon Electrodes for Enhanced Electrochemical Performance. Front Chem 2020; 8:430. [PMID: 32582632 PMCID: PMC7287394 DOI: 10.3389/fchem.2020.00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/23/2020] [Indexed: 11/26/2022] Open
Abstract
In the present work, we have developed a facile one-step route for preparing electrochemically reduced graphene oxide-cationic pillar[6]arene (ErGO-CP6) nanocomposite films on glassy carbon electrodes (GCEs) directly from graphene oxide-cationic pillar[6]arene (GO-CP6) colloidal solution by using a pulsed electrodeposition technique. The electrocatalytic activity of ErGO-CP6 was examined by studying the oxidations of five purine bases [adenine (A), guanine (G), xanthine (X), hypoxanthine (HX), and uric acid (UA)]. It enhanced the oxidation currents of A, G, X, HX, and UA when compared to unmodified ErGO films and bare GCE, which is considered to be the synergetic effects of the graphene (excellent electrical properties and large surface area) and CP6 molecules (high inclusion complexation and enrichment capability).
Collapse
Affiliation(s)
- Qunpeng Duan
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Lijie Wang
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Fei Wang
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Hongsong Zhang
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Kui Lu
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China.,School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, Zhengzhou, China
| |
Collapse
|
8
|
Duan Q, Wang L, Wang F, Zhang H, Lu K. Direct electrodeposition of cationic pillar[6]arene-modified graphene oxide composite films and their host–guest inclusions for enhanced electrochemical performance. RSC Adv 2020; 10:21954-21962. [PMID: 35516626 PMCID: PMC9054522 DOI: 10.1039/d0ra03138k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/18/2020] [Accepted: 06/02/2020] [Indexed: 11/21/2022] Open
Abstract
Cationic pillar[6]arene functionalized graphene films with enhanced host–guest electrochemical recognition performance were fabricated directly from GO-CP6 dispersions by a one-step pulsed electrodeposition technique.
Collapse
Affiliation(s)
- Qunpeng Duan
- School of Materials and Chemical Engineering
- Henan University of Engineering
- Zhengzhou
- China
| | - Lijie Wang
- School of Materials and Chemical Engineering
- Henan University of Engineering
- Zhengzhou
- China
| | - Fei Wang
- School of Materials and Chemical Engineering
- Henan University of Engineering
- Zhengzhou
- China
| | - Hongsong Zhang
- School of Materials and Chemical Engineering
- Henan University of Engineering
- Zhengzhou
- China
| | - Kui Lu
- School of Materials and Chemical Engineering
- Henan University of Engineering
- Zhengzhou
- China
- School of Chemical Engineering and Food Science
| |
Collapse
|