1
|
Wang G, Chen A, Aryal P, Bietsch J. Synthetic approaches of carbohydrate based self-assembling systems. Org Biomol Chem 2024; 22:5470-5510. [PMID: 38904076 DOI: 10.1039/d4ob00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Carbohydrate-based self-assembling systems are essential for the formation of advanced biocompatible materials via a bottom-up approach. The self-assembling of sugar-based small molecules has applications encompassing many research fields and has been studied extensively. In this focused review, we will discuss the synthetic approaches for carbohydrate-based self-assembling (SA) systems, the mechanisms of the assembly, as well as the main properties and applications. This review will mainly cover recent publications in the last four years from January 2020 to December 2023. We will essentially focus on small molecule self-assembly, excluding polymer-based systems, which include various derivatives of monosaccharides, disaccharides, and oligosaccharides. Glycolipids, glycopeptides, and some glycoconjugate-based systems are discussed. Typically, in each category of systems, the system that can function as low molecular weight gelators (LMWGs) will be discussed first, followed by self-assembling systems that produce micelles and aggregates. The last section of the review discusses stimulus-responsive self-assembling systems, especially those forming gels, including dynamic covalent assemblies, chemical-triggered systems, and photoresponsive systems. The review will be organized based on the sugar structures, and in each category, the synthesis of representative molecular systems will be discussed next, followed by the properties of the resulting molecular assemblies.
Collapse
Affiliation(s)
- Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Anji Chen
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Pramod Aryal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Jonathan Bietsch
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
2
|
Vasanthan RJ, Pradhan S, Thangamuthu MD. Emerging Aspects of Triazole in Organic Synthesis: Exploring its Potential as a Gelator. Curr Org Synth 2024; 21:456-512. [PMID: 36221871 DOI: 10.2174/1570179420666221010094531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) - commonly known as the "click reaction" - serves as the most effective and highly reliable tool for facile construction of simple to complex designs at the molecular level. It relates to the formation of carbon heteroatomic systems by joining or clicking small molecular pieces together with the help of various organic reactions such as cycloaddition, conjugate addition, ring-opening, etc. Such dynamic strategy results in the generation of triazole and its derivatives from azides and alkynes with three nitrogen atoms in the five-membered aromatic azole ring that often forms gel-assembled structures having gelating properties. These scaffolds have led to prominent applications in designing advanced soft materials, 3D printing, ion sensing, drug delivery, photonics, separation, and purification. In this review, we mainly emphasize the different mechanistic aspects of triazole formation, which includes the synthesis of sugar-based and non-sugar-based triazoles, and their gel applications reported in the literature for the past ten years, as well as the upcoming scope in different branches of applied sciences.
Collapse
Affiliation(s)
- Rabecca Jenifer Vasanthan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Sheersha Pradhan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Mohan Das Thangamuthu
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| |
Collapse
|
3
|
Bietsch J, Chen A, Wang D, Wang G. Synthesis of a Series of Trimeric Branched Glycoconjugates and Their Applications for Supramolecular Gels and Catalysis. Molecules 2023; 28:6056. [PMID: 37630308 PMCID: PMC10459207 DOI: 10.3390/molecules28166056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Carbohydrate-derived molecular gelators have found many practical applications as soft materials. To better understand the structure and molecular gelation relationship and further explore the applications of sugar-based gelators, we designed and synthesized eight trimeric branched sugar triazole derivatives and studied their self-assembling properties. These included glucose, glucosamine, galactose, and maltose derivatives. Interestingly, the gelation properties of these compounds exhibited correlations with the peripheral sugar structures. The maltose derivative did not form gels in the tested solvents, but all other compounds exhibited gelation properties in at least one of the solvents. Glucose derivatives showed superior performance, followed by glucosamine derivatives. They typically formed gels in toluene and alcohols; some formed gels in ethanol-water mixtures or DMSO water mixtures. The glycoclusters 9 and 10 demonstrated rate acceleration for the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions. These were further studied for their metallogels formation properties, and the copper metallogels from compound 9 were successfully utilized to catalyze click reactions. These metallogels were able to form a gel column, which was effective in converting the reactants into the triazole products in multiple cycles. Moreover, the same gel column was used to transform a second click reaction using different reactants. The synthesis and characterization of these compounds and their applications for catalytic reactions were discussed.
Collapse
Affiliation(s)
| | | | | | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (J.B.); (A.C.); (D.W.)
| |
Collapse
|
4
|
Liu J, Zhang Y, van Dongen K, Kennedy C, Schotman MJG, Marín San Román PP, Storm C, Dankers PYW, Sijbesma RP. Hepatic Spheroid Formation on Carbohydrate-Functionalized Supramolecular Hydrogels. Biomacromolecules 2023. [PMID: 37246400 DOI: 10.1021/acs.biomac.2c01390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Two synthetic supramolecular hydrogels, formed from bis-urea amphiphiles containing lactobionic acid (LBA) and maltobionic acid (MBA) bioactive ligands, are applied as cell culture matrices in vitro. Their fibrillary and dynamic nature mimics essential features of the extracellular matrix (ECM). The carbohydrate amphiphiles self-assemble into long supramolecular fibers in water, and hydrogels are formed by physical entanglement of fibers through bundling. Gels of both amphiphiles exhibit good self-healing behavior, but remarkably different stiffnesses. They display excellent bioactive properties in hepatic cell cultures. Both carbohydrate ligands used are proposed to bind to asialoglycoprotein receptors (ASGPRs) in hepatic cells, thus inducing spheroid formation when seeding hepatic HepG2 cells on both supramolecular hydrogels. Ligand nature, ligand density, and hydrogel stiffness influence cell migration and spheroid size and number. The results illustrate the potential of self-assembled, carbohydrate-functionalized hydrogels as matrices for liver tissue engineering.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Ying Zhang
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Kim van Dongen
- CytoSMART Technologies B.V., Vrijstraat 9B, Eindhoven 5611 AT, The Netherlands
| | - Chris Kennedy
- Institute for Complex Molecular Systems, Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Maaike J G Schotman
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Patricia P Marín San Román
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Cornelis Storm
- Institute for Complex Molecular Systems, Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Rint P Sijbesma
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
5
|
Ahiadorme D, Ande C, Fernandez-Botran R, Crich D. Synthesis and evaluation of 1,5-dithialaminaribiose and -triose tetravalent constructs. Carbohydr Res 2023; 525:108781. [PMID: 36898263 PMCID: PMC10069760 DOI: 10.1016/j.carres.2023.108781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
We report the synthesis of novel tetravalent glucoclusters containing 1,5-dithia mimetics of laminaribiose and triose. The new constructs were evaluated for their ability to inhibit anti-CR3 fluorescent staining of human neutrophils, for which they showed moderate affinity. Evaluation of the synthesized glycoclusters for their ability to inhibit anti-Dectin-1 fluorescent staining of mouse macrophages revealed little to no affinity for Dectin-1.
Collapse
Affiliation(s)
- Daniil Ahiadorme
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA, 30602, United States; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, United States
| | - Chennaiah Ande
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, United States
| | - Rafael Fernandez-Botran
- Department of Pathology and Laboratory Medicine, University of Louisville, 511 South Floyd Street, Louisville, KY, 40292, United States
| | - David Crich
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA, 30602, United States; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, United States; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, United States.
| |
Collapse
|
6
|
Nural Y, Ozdemir S, Yalcin MS, Demir B, Atabey H, Seferoglu Z, Ece A. New bis- and tetrakis-1,2,3-triazole derivatives: Synthesis, DNA cleavage, molecular docking, antimicrobial, antioxidant activity and acid dissociation constants. Bioorg Med Chem Lett 2022; 55:128453. [PMID: 34801684 DOI: 10.1016/j.bmcl.2021.128453] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023]
Abstract
In this study, a series of bis- and tetrakis-1,2,3-triazole derivatives were synthesized using copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry in 73-95% yield. The bis- and tetrakis-1,2,3-triazoles exhibited significant DNA cleavage activity while the tetrakis-1,2,3-triazole analog 6g completely degraded the plasmid DNA. Molecular docking simulations suggest that compound 6g acts as minor groove binder of DNA by binding through several noncovalent interactions with base pairs. All bis- and tetrakis-1,2,3-triazole derivatives were screened for antibacterial activity against E. coli, B. cereus, S. aureus, P. aeruginosa, E. hirae, L. pneumophila subsp. pneumophila strains and antifungal activity against microfungus C. albicans and C. tropicalis strains. Compound 4d exhibited the best antibacterial activity among bis-1,2,3-triazoles against E. coli and E. hirae, while 6c exhibited the best antibacterial activity among tetrakis-1,2,3-triazoles against E. hirae. Furthermore, the best antifungal activity against C. albicans and C. tropicalis was reported for the compound 5, while 6d displayed the best antifungal activity against C. tropicalis and C. albicans. Reasonable iron chelating activities and DPPH radical scavenging abilities were found for some of the compounds. Finally, the acid dissociation constants (pKa) of the bis-1,2,3-triazoles were also determined with the help of HYPERQUAD program using the data obtained from potentiometric titrations. The reported data here concludes that the bis- and tetrakis-1,2,3-triazoles are important cores that should be considered for further development of especially new anticancer agents acting through the DNA cleavage activity.
Collapse
Affiliation(s)
- Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin 33169, Turkey; Advanced Technology, Research and Application Center, Mersin University, 33343 Mersin, Turkey.
| | - Sadin Ozdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin 33343, Turkey
| | - Mustafa Serkan Yalcin
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, Mersin 33343, Turkey
| | - Bunyamin Demir
- Advanced Technology, Research and Application Center, Mersin University, 33343 Mersin, Turkey; Department of Mechanical Engineering, Faculty of Engineering, Mersin University, Mersin 33169, Turkey
| | - Hasan Atabey
- Mersin National Education Directorate, Department of Analytical Chemistry, Mersin, Turkey
| | - Zeynel Seferoglu
- Department of Chemistry, Faculty of Science, Gazi University, Yenimahalle, Ankara TR-06560, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey
| |
Collapse
|
7
|
Bietsch J, Olson M, Wang G. Fine-Tuning of Molecular Structures to Generate Carbohydrate Based Super Gelators and Their Applications for Drug Delivery and Dye Absorption. Gels 2021; 7:134. [PMID: 34563020 PMCID: PMC8482264 DOI: 10.3390/gels7030134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
Carbohydrate-based low molecular weight gelators (LMWGs) exhibit many desirable properties making them useful in various fields including applications as drug delivery carriers. In order to further understand the structural connection to gelation properties, especially the influence of halide substitutions, we have designed and synthesized a series of para-chlorobenzylidene acetal protected D-glucosamine amide derivatives. Fifteen different amides were synthesized, and their self-assembling properties were assessed in multiple organic solvents, as well as mixtures of organic solvents with water. All derivatives were found to be gelators for at least one solvent and majority formed gels in multiple solvents at concentrations lower than 2 wt%. A few derivatives rendered remarkably stable gels in aqueous solutions at concentrations below 0.1 wt%. The benzamide 13 formed gels in water and in EtOH/H2O (v/v 1:2) at 0.36 mg/mL. The gels were characterized using optical microscopy and atomic force microscopy, and the self-assembly mechanism was probed using variable temperature 1H-NMR spectroscopy. Gel extrusion studies using H2O/DMSO gels successfully printed lines of gels on glass slides, which retained viscoelasticity based on rheology. Gels formed by the benzamide 13 were used for encapsulation and the controlled release of chloramphenicol and naproxen, as well as for dye removal for toluidine blue aqueous solutions.
Collapse
Affiliation(s)
| | | | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (J.B.); (M.O.)
| |
Collapse
|
8
|
Synthesis and Self-Assembling Properties of Peracetylated β-1-Triazolyl Alkyl D-Glucosides and D-Galactosides. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carbohydrate-based low-molecular-weight gelators (LMWGs) are useful classes of compounds due to their numerous applications. Among sugar-based LMWGs, certain peracetylated sugar beta-triazole derivatives were found to be effective organogelators and showed interesting self-assembling properties. To further understand the structural influence towards molecular assemblies and obtain new functional materials with interesting properties, we designed and synthesized a library of tetraacetyl beta-1-triazolyl alkyl-D-glucosides and D-galactosides, in which a two or three carbon spacer is inserted between the anomeric position and the triazole moiety. A series of 16 glucose derivatives and 14 galactose derivatives were synthesized and analyzed. The self-assembling properties of these new triazole containing glycoconjugates in different solvents were analyzed. Several glucose derivatives were found to be effective LMWGs, with compound 7a forming gels in a variety of organic solvents as well as in the presence of metal ions in aqueous solutions. The organogels formed by several compounds were characterized using optical microscopy, atomic force microscopy (AFM) and UV-vis spectroscopy, etc. The co-gels formed by compound 7a with the Fmoc derivative 7i showed interesting fluorescence enhancement upon gelation. Several gelators were also characterized using powder X-ray diffraction and FT-IR spectroscopy. The potential applications of these sugar-based gelators for drug delivery and dye removal were also studied.
Collapse
|
9
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
10
|
Morris J, Bietsch J, Bashaw K, Wang G. Recently Developed Carbohydrate Based Gelators and Their Applications. Gels 2021; 7:24. [PMID: 33652820 PMCID: PMC8006029 DOI: 10.3390/gels7010024] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate based low molecular weight gelators have been an intense subject of study over the past decade. The self-assembling systems built from natural products have high significance as biocompatible materials and renewable resources. The versatile structures available from naturally existing monosaccharides have enriched the molecular libraries that can be used for the construction of gelators. The bottom-up strategy in designing low molecular weight gelators (LMWGs) for a variety of applications has been adopted by many researchers. Rational design, along with some serendipitous discoveries, has resulted in multiple classes of molecular gelators. This review covers the literature from 2017-2020 on monosaccharide based gelators, including common hexoses, pentoses, along with some disaccharides and their derivatives. The structure-based design and structure to gelation property relationships are reviewed first, followed by stimuli-responsive gelators. The last section focuses on the applications of the sugar based gelators, including their utilization in environmental remediation, ion sensing, catalysis, drug delivery and 3D-printing. We will also review the available LMWGs and their structure correlations to the desired properties for different applications. This review aims at elucidating the design principles and structural features that are pertinent to various applications and hope to provide certain guidelines for researchers that are working at the interface of chemistry, biochemistry, and materials science.
Collapse
Affiliation(s)
| | | | | | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (J.M.); (J.B.); (K.B.)
| |
Collapse
|
11
|
Wang G, Wang D, Bietsch J, Chen A, Sharma P. Synthesis of Dendritic Glycoclusters and Their Applications for Supramolecular Gelation and Catalysis. J Org Chem 2020; 85:16136-16156. [PMID: 33301322 DOI: 10.1021/acs.joc.0c01978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glycoclusters with three, four, and six arms of glycosyl triazoles were designed, synthesized, and characterized. The self-assembling properties of these molecules and their catalytic activity as ligands in copper-catalyzed azide and alkyne cycloaddition (CuAAC) reactions were studied. The compounds with a lower number of branches exhibit excellent gelation properties and can function as supramolecular gelators. The resulting gels were characterized using optical microcopy and atomic force microscopy. The glycoconjugates containing six branches showed significant catalytic activity for copper sulfate mediated cycloaddition reactions. In aqueous solutions, 1 mol % of glycoclusters to substrates was efficient at accelerating these reactions. Several trimeric compounds were found to be capable of forming co-gels with the catalytically active hexameric compounds. Using the organogels formed by the glycoconjugates as supramolecular catalysts, efficient catalysis was demonstrated for several CuAAC reactions. The metallogels with CuSO4 were also prepared as gel columns, which can be reused for the cycloaddition reactions several times. These include the preparation of a few glycosyl triazoles and aryl triazoles and isoxazoles. We expect that these sugar-based soft biomaterials will have applications beyond supramolecular catalysis for copper-catalyzed cycloaddition reactions. They may also be useful as ligands or gel matrixes for other metal-ion catalyzed organic reactions.
Collapse
Affiliation(s)
- Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Dan Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Jonathan Bietsch
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Anji Chen
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Pooja Sharma
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| |
Collapse
|