1
|
Zhang Y, Dai X, Wang J, Liang J, Rabeah J, Tian X, Yao X, Wang Y, Pang S. In Situ-Generated Cu I Catalytic System for Oxidative N-Formylation of N-Heterocycles and Acyclic Amines with Methanol. CHEMSUSCHEM 2023; 16:e202202104. [PMID: 36478405 DOI: 10.1002/cssc.202202104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The development of a sustainable and simple catalytic system for N-formylation of N-heterocycles with methanol by direct coupling remains a challenge, owing to many competing side reactions, given the sensitivity of N-heterocycles to many catalytic oxidation or dehydrogenation systems. This work concerns the development of an in situ-generated CuI catalytic system for oxidative N-formylation of N-heterocycles with methanol that is based on the case study of a more typical 1,2,3,4-tetrahydroquinoline as substrate. Aside from N-heterocycles, some acyclic amines are also transformed into the corresponding N-formamides in moderate yields. Furthermore, a probable reaction mechanism and reaction pathway are proposed and extension of work based on some findings leads to a demonstration that the formed ⋅O2 - and ⋅OOH radicals in the catalytic system is related to the formation of undesired tar-like products.
Collapse
Affiliation(s)
- Yujing Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Xingchao Dai
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Jixue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Junxi Liang
- Chemical Engineering Institute, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, 730030, Lanzhou, Gansu, P. R. China
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Xia Tian
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Xiaoqiang Yao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Yanbin Wang
- Chemical Engineering Institute, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, 730030, Lanzhou, Gansu, P. R. China
| | - Shaofeng Pang
- Chemical Engineering Institute, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, 730030, Lanzhou, Gansu, P. R. China
| |
Collapse
|
2
|
Woo J, Christian AH, Burgess SA, Jiang Y, Mansoor UF, Levin MD. Scaffold hopping by net photochemical carbon deletion of azaarenes. Science 2022; 376:527-532. [PMID: 35482853 PMCID: PMC9107930 DOI: 10.1126/science.abo4282] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Discovery chemists routinely identify purpose-tailored molecules through an iterative structural optimization approach, but the preparation of each successive candidate in a compound series can rarely be conducted in a manner matching their thought process. This is because many of the necessary chemical transformations required to modify compound cores in a straightforward fashion are not applicable in complex contexts. We report a method that addresses one facet of this problem by allowing chemists to hop directly between chemically distinct heteroaromatic scaffolds. Specifically, we show that selective photolysis of quinoline N-oxides with 390-nanometer light followed by acid-promoted rearrangement affords N-acylindoles while showing broad compatibility with medicinally relevant functionality. Applications to late-stage skeletal modification of compounds of pharmaceutical interest and more complex transformations involving serial single-atom changes are demonstrated.
Collapse
Affiliation(s)
- Jisoo Woo
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | | | | | - Yuan Jiang
- Analytical Research and Development, Merck & Co., Inc., Boston, MA, USA
| | | | - Mark D. Levin
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Llopis N, Gisbert P, Baeza A, Correa-Campillo J. Dehydrogenation of N‐Heterocyclic Compounds Using H2O2 and Mediated by Polar Solvents. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Xu W, Liu F, Li J, Li M, Xie J, Zhu C. Thiocarbamoyl Fluoride Synthesis by Deconstructive Diversification of Arylated Tetrahydroisoquinolines. J Org Chem 2021; 86:12443-12451. [PMID: 34324330 DOI: 10.1021/acs.joc.1c01468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deconstructive functionalization of cyclic amines can provide access to chemicals with diverse skeletons. We report the conversion of tertiary amines to thiocarbamoyl fluorides, a reaction enabled by photoredox catalysis and tolerating different functional groups while avoiding strong oxidants. A one-pot synthetic method from tertiary amines and AgF has been developed to get access to trifluoromethylamines. The synthesized thiocarbamoyl fluorides can be further transferred into esters.
Collapse
Affiliation(s)
- Wentao Xu
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China.,State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fang Liu
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jiajun Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Muzi Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Roque JB, Sarpong R, Musaev DG. Key Mechanistic Features of the Silver(I)-Mediated Deconstructive Fluorination of Cyclic Amines: Multistate Reactivity versus Single-Electron Transfer. J Am Chem Soc 2021; 143:3889-3900. [DOI: 10.1021/jacs.0c13061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jose B. Roque
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|