1
|
Afari MNK, Heikinmäki N, Virta P, Lönnberg T. The Impact of Secondary Structure on the Base-Filling of N-Methoxy-1,3-Oxazinane (MOANA) and N-Methoxy-1,3-Oxazolidine Glycol Nucleic Acid (MOGNA) Oligonucleotides. Chembiochem 2024:e202400666. [PMID: 39243158 DOI: 10.1002/cbic.202400666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/09/2024]
Abstract
Various single-stranded and hairpin-forming DNA and 2'-O-methyl-RNA oligonucleotides bearing a single (2R,3S)-4-(methoxyamino)butane-1,2,3-triol residue esterified from either O1 and O2 or O1 and O3 were synthesized. Incubation of these oligonucleotides with equimolar mixtures of formylmethyl derivatives of the canonical nucleobases and 2-methylbenzimidazole under mildly acidic conditions revealed base-filling of the modified site to be strongly favored by base stacking of a double-helix, especially an A-type one. In 2'-O-methyl-RNA hairpin oligonucleotides, base-filling of the (2R,3S)-4-(methoxyamino)butane-1,2,3-triol residue with nucleobase aldehydes followed the rules of Watson-Crick base pairing, thymine being the only exception. In single-stranded oligonucleotides or the Hoogsteen strand of triple helices, both the yield and selectivity of base-filling were much more modest.
Collapse
Affiliation(s)
- Mark N K Afari
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Ninna Heikinmäki
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| |
Collapse
|
2
|
Ashwood B, Jones MS, Radakovic A, Khanna S, Lee Y, Sachleben JR, Szostak JW, Ferguson AL, Tokmakoff A. Thermodynamics and kinetics of DNA and RNA dinucleotide hybridization to gaps and overhangs. Biophys J 2023; 122:3323-3339. [PMID: 37469144 PMCID: PMC10465710 DOI: 10.1016/j.bpj.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023] Open
Abstract
Hybridization of short nucleic acid segments (<4 nt) to single-strand templates occurs as a critical intermediate in processes such as nonenzymatic nucleic acid replication and toehold-mediated strand displacement. These templates often contain adjacent duplex segments that stabilize base pairing with single-strand gaps or overhangs, but the thermodynamics and kinetics of hybridization in such contexts are poorly understood because of the experimental challenges of probing weak binding and rapid structural dynamics. Here we develop an approach to directly measure the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization using steady-state and temperature-jump infrared spectroscopy. Our results suggest that dinucleotide binding is stabilized through coaxial stacking interactions with the adjacent duplex segments as well as from potential noncanonical base-pairing configurations and structural dynamics of gap and overhang templates revealed using molecular dynamics simulations. We measure timescales for dissociation ranging from 0.2-40 μs depending on the template and temperature. Dinucleotide hybridization and dehybridization involve a significant free energy barrier with characteristics resembling that of canonical oligonucleotides. Together, our work provides an initial step for predicting the stability and kinetics of hybridization between short nucleic acid segments and various templates.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, The University of Chicago, Chicago, Illinois; The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Michael S Jones
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | | | - Smayan Khanna
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Yumin Lee
- Department of Chemistry, The University of Chicago, Chicago, Illinois; The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Joseph R Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - Jack W Szostak
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Andrei Tokmakoff
- Department of Chemistry, The University of Chicago, Chicago, Illinois; The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
3
|
Ashwood B, Jones MS, Radakovic A, Khanna S, Lee Y, Sachleben JR, Szostak JW, Ferguson AL, Tokmakoff A. Direct monitoring of the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization from gaps and overhangs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536266. [PMID: 37090657 PMCID: PMC10120721 DOI: 10.1101/2023.04.10.536266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Hybridization of short nucleic acid segments (<4 nucleotides) to single-strand templates occurs as a critical intermediate in processes such as non-enzymatic nucleic acid replication and toehold-mediated strand displacement. These templates often contain adjacent duplex segments that stabilize base pairing with single-strand gaps or overhangs, but the thermodynamics and kinetics of hybridization in such contexts are poorly understood due to experimental challenges of probing weak binding and rapid structural dynamics. Here we develop an approach to directly measure the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization using steady-state and temperature-jump infrared spectroscopy. Our results suggest that dinucleotide binding is stabilized through coaxial stacking interactions with the adjacent duplex segments as well as from potential non-canonical base pairing configurations and structural dynamics of gap and overhang templates revealed using molecular dynamics simulations. We measure timescales for dissociation ranging from 0.2 to 40 µs depending on the template and temperature. Dinucleotide hybridization and dehybridization involves a significant free energy barrier with characteristics resembling that of canonical oligonucleotides. Together, our work provides an initial step for predicting the stability and kinetics of hybridization between short nucleic acid segments and various templates.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637
- The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| | - Michael S Jones
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | | | - Smayan Khanna
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Yumin Lee
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637
| | - Joseph R Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, United States
| | - Jack W Szostak
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637
- The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Kawai H, Doi T, Ito Y, Kameyama T, Torimoto T, Kashida H, Asanuma H. Perylene-Cy3 FRET System to Analyze Photoactive DNA Structures. Chemistry 2021; 27:12845-12850. [PMID: 34269491 DOI: 10.1002/chem.202101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/10/2022]
Abstract
We report a new Förster resonance energy transfer (FRET) system for structural analyses of DNA duplexes using perylene and Cy3 as donor and acceptor, respectively, linked at the termini of a DNA duplex via D-threoninol. Experimentally obtained FRET efficiencies were in good agreement with theoretical values calculated based on canonical B-form DNA. Due to the relatively long Förster radius, this system can be used to analyze large DNA structures, and duplexes containing photo-reactive molecules can be analyzed since perylene can be excited with visible light. The system was used to analyze a DNA duplex containing stilbene, demonstrating that in the region of the stilbene cluster the duplex adopts a ladder-like structure rather than helical one. Upon photodimerization between stilbene residues, FRET efficiencies indicated the reaction does not disturb DNA duplex. This FRET system will be useful for analysis of photoreactions of nucleobases as well as a wide range of nucleic acid structures.
Collapse
Affiliation(s)
- Hayato Kawai
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tetsuya Doi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuka Ito
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tatsuya Kameyama
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tsukasa Torimoto
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiromu Kashida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
5
|
Kashida H, Kawai H, Azuma H, Araki Y, Wada T, Asanuma H. Quantitative Analyses of Förster Resonance Energy Transfer between Identical Pyrene Chromophores (Homo‐FRET) In DNA Scaffolds. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hiromu Kashida
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hayato Kawai
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hidenori Azuma
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Yasuyuki Araki
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
6
|
Hirashima S, Sugiyama H, Park S. Construction of a FRET System in a Double-Stranded DNA Using Fluorescent Thymidine and Cytidine Analogs. J Phys Chem B 2020; 124:8794-8800. [DOI: 10.1021/acs.jpcb.0c06879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Kashida H, Azuma H, Maruyama R, Araki Y, Wada T, Asanuma H. Efficient Light‐Harvesting Antennae Resulting from the Dense Organization of Dyes into DNA Junctions through
d
‐Threoninol. Angew Chem Int Ed Engl 2020; 59:11360-11363. [DOI: 10.1002/anie.202004221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Hiromu Kashida
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hidenori Azuma
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Ryoko Maruyama
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Yasuyuki Araki
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
8
|
Kashida H, Azuma H, Maruyama R, Araki Y, Wada T, Asanuma H. Efficient Light‐Harvesting Antennae Resulting from the Dense Organization of Dyes into DNA Junctions through
d
‐Threoninol. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hiromu Kashida
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hidenori Azuma
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Ryoko Maruyama
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Yasuyuki Araki
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|