1
|
Eisavi R. CaFe 2O 4@SiO 2-Cu as a novel and highly efficient nanocatalyst for direct conversion of epoxides to β-acetoxy esters. Sci Rep 2024; 14:26606. [PMID: 39496670 PMCID: PMC11535249 DOI: 10.1038/s41598-024-77281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Direct conversion of structurally various epoxides to the related β-acetoxy esters was investigated using catalytic amounts of CaFe2O4@SiO2-Cu. The reactions were accomplished in the presence of acetic anhydride under solvent-free conditions within 0.5-2 h to give desired products in high yields. Initially, the CaFe2O4 nanoparticles were manufactured through a chemical coprecipitation reaction of calcium nitrate and hydrated iron (III) nitrate in the presence of ammonium hydroxide solution, and then calcined at 800 ºC. Next, to protect the prepared CaFe2O4 from oxidation and aggregation, its surface was covered with a silica layer to give CaFe2O4@SiO2. Eventually, by adding copper chloride solution followed by potassium borohydride solid powder, Cu nanoparticles were successfully immobilized on the silica surface and the new CaFe2O4@SiO2-Cu nanocomposite was obtained. FT-IR, SEM, EDX, VSM, ICP-OES, TGA, TEM and XRD techniques were employed to characterize the newly synthesized nanostructure. In addition, durability of the catalyst was considered for several sequential reaction cycles without the notable loss of catalytic activity. The absence of hazardous organic solvents, high product yields, short reaction times and recoverability of the magnetic catalyst are among the remarkable advantages of the introduced procedure.
Collapse
Affiliation(s)
- Ronak Eisavi
- Department of Chemistry, Payame Noor Universtiy, P.O. BOX 19395-4697, Tehran, Iran.
| |
Collapse
|
2
|
Díaz-Fernández M, Algarra M, Calvo-Losada S, Quirante JJ, Sarabia F, Pino-González MS. Diverse Methods with Stereoselective Induction in the Asymmetric Biginelli Reaction. Molecules 2024; 29:3864. [PMID: 39202943 PMCID: PMC11357475 DOI: 10.3390/molecules29163864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
The relevance of the asymmetric Biginelli reaction (ABR) has been increased in this century, due to the pharmacological application of its products. This review focuses predominantly on articles published in the period from 2015 to 2024 on asymmetric synthetic advances in the formation of dihydropyrimidinones (DHPMs), dihydropyrimidinethiones (DHPMTs), and related compounds. The relevant bibliography on general processes in the Biginelli reaction and some methods of separation of isomers have also been referenced.
Collapse
Affiliation(s)
- Marcos Díaz-Fernández
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (M.D.-F.); (F.S.)
- Department of Physical Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (S.C.-L.); (J.-J.Q.)
| | - Manuel Algarra
- Department of Science, INAMAT2-Institute for Advanced Materials and Mathematics, Public University of Navarra, 31006 Pamplona, Spain;
| | - Saturnino Calvo-Losada
- Department of Physical Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (S.C.-L.); (J.-J.Q.)
| | - José-Joaquín Quirante
- Department of Physical Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (S.C.-L.); (J.-J.Q.)
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (M.D.-F.); (F.S.)
| | - María-Soledad Pino-González
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (M.D.-F.); (F.S.)
| |
Collapse
|
3
|
Eisavi R, Ghadernejad S. NiFe 2O 4@SiO 2-Cu as a novel and efficient magnetically recoverable nanocatalyst for regioselective synthesis of β-thiol-1,2,3-triazoles under benign conditions. RSC Adv 2023; 13:27984-27996. [PMID: 37736561 PMCID: PMC10510628 DOI: 10.1039/d3ra05433k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
A green, mild and eco-friendly approach for the three component one-pot regioselective synthesis of 1,2,3-triazoles from thiiranes has been introduced in the presence of NiFe2O4@SiO2-Cu as a new and recoverable nanocatalyst. First, the NiFe2O4 nanoparticles have been produced through a solid-state reaction of hydrated nickel sulfate, hydrated iron(iii) nitrate, NaOH and NaCl salts, and then calcined at 700 °C. Next, in order to protect the ferrite particles from oxidation and aggregation, the NiFe2O4 was core-shelled using tetraethyl orthosilicate (TEOS) and converted to NiFe2O4@SiO2. Finally, the novel NiFe2O4@SiO2-Cu nanocomposite was successfully prepared by adding copper(ii) chloride solution and solid potassium borohydride. The catalyst has been characterized by FT-IR, SEM, EDX, VSM, ICP-OES, TEM and XRD techniques. The 1,3-dipolar cyclization of 1,2,3-triazoles was performed successfully in water at room temperature in high yields. The recoverability and reusability of the heterogeneous NiFe2O4@SiO2-Cu have also been investigated using VSM, SEM and FT-IR analyses. The catalyst was used four times in consecutive runs without considerable loss of activity. The presented procedure provides significant benefits such as using water as a green solvent, absence of hazardous organic solvents, high yields, benign conditions and recyclability of the magnetic catalyst.
Collapse
Affiliation(s)
- Ronak Eisavi
- Department of Chemistry, Payame Noor University P.O. BOX 19395-4697 Tehran Iran
| | - Seiran Ghadernejad
- Department of Chemistry, Payame Noor University P.O. BOX 19395-4697 Tehran Iran
| |
Collapse
|
4
|
Tathe AG, Saswade SS, Patil NT. Gold-catalyzed multicomponent reactions. Org Chem Front 2023. [DOI: 10.1039/d3qo00272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Multicomponent reactions (MCRs) have emerged as an important branch in organic synthesis for the creation of complex molecular structures. This review is focused on gold-catalyzed MCRs with a special emphasis on the recent developments.
Collapse
|
5
|
Zivkovic FG, D-T Nielsen C, Schoenebeck F. Access to N-CF 3 Formamides by Reduction of N-CF 3 Carbamoyl Fluorides. Angew Chem Int Ed Engl 2022; 61:e202213829. [PMID: 36308723 PMCID: PMC10099374 DOI: 10.1002/anie.202213829] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 11/06/2022]
Abstract
The departure into unknown chemical space is essential for the discovery of new properties and function. We herein report the first synthetic access to N-trifluoromethylated formamides. The method involves the reduction of bench-stable NCF3 carbamoyl fluorides and is characterized by operational simplicity and mildness, tolerating a broad range of functional groups as well as stereocenters. The newly made N-CF3 formamide motif proved to be highly robust and compatible with diverse chemical transformations, underscoring its potential as building block in complex functional molecules.
Collapse
Affiliation(s)
- Filip G Zivkovic
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Christian D-T Nielsen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
6
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
7
|
Eisavi R, Ahmadi F. Fe 3O 4@SiO 2-PMA-Cu magnetic nanoparticles as a novel catalyst for green synthesis of β-thiol-1,4-disubstituted-1,2,3-triazoles. Sci Rep 2022; 12:11939. [PMID: 35831386 PMCID: PMC9279321 DOI: 10.1038/s41598-022-15980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
The magnetic nanoparticles of Fe3O4 were synthesized through a solid-state reaction of hydrated iron (III) chloride, hydrated iron (II) chloride and NaOH, and then purified by calcination at high temperature. In order to protect ferrite nanoparticles from oxidation and agglomeration, and to manufacture a novel catalytic system of anchored copper on the magnetic substrate, the Fe3O4 was core-shelled by adding tetraethyl orthosilicate. Next, the prepared Fe3O4@SiO2 was supported by phosphomolybdic acid (PMA) as the second layer of nanocomposite at 80 °C in 30 h. Eventually, the new nanocomposite of Fe3O4@SiO2-PMA-Cu was successfully synthesized by adding copper (II) chloride solution and solid potassium borohydride. The structure of magnetic nanocatalyst was acknowledged through different techniques such as EDS, VSM, XRD, TEM, FT-IR, XPS, TGA, BET and FESEM. The synthesis of β-thiolo/benzyl-1,2,3-triazoles from various thiiranes, terminal alkynes and sodium azide was catalyzed by Fe3O4@SiO2-PMA-Cu nanocomposite in aqueous medium. In order to obtain the optimum condition, the effects of reaction time, temperature, catalyst amount and solvent were gauged. The recycled catalyst was used for several consecutive runs without any loss of activity.
Collapse
Affiliation(s)
- Ronak Eisavi
- Department of Chemistry, Payame Noor Universtiy (PNU), P.O. BOX 19395-4697, Tehran, Iran.
| | - Fereshteh Ahmadi
- Department of Chemistry, Payame Noor Universtiy (PNU), P.O. BOX 19395-4697, Tehran, Iran
| |
Collapse
|
8
|
Jivani AJ, Kapadiya KM, Khunt RC. Miscellaneous Passerini Reaction for α-Acyloxy Carboxamide: Synthesis
and Process Optimization Study. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210125161922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
An accelerating effect of “Phase Transfer Catalyst” as additive was exposed for the Passerini three-component
reactions and the influence on the reaction rate was studied concerning direct involvement of reactant molecules. The most
flexible reaction for the rapid formation of diverse “α-acyloxycarboxamides” using passerini reaction involved multicomponent reactions using miscellaneous 2-(prop-2-ynyloxy)benzaldehyde with various aromatic acid and slightly non-polar
fragment i.e. 2-isocyano-2,3,3-trimethylbutane and the representative molecule was characterized with resepct to DEPT135 NMR technique.
Collapse
Affiliation(s)
- Amita J. Jivani
- Department of Chemistry, Chemistry Research Laboratory, Saurashtra University, Rajkot-360 005, Gujarat-India
| | - Khushal M. Kapadiya
- Bio-Research and Characterization Centre, School of Science, Department of Chemistry, RK University, Rajkot-360
020, Gujarat-India
| | - Ranjan C. Khunt
- Department of Chemistry, Chemistry Research Laboratory, Saurashtra University, Rajkot-360 005, Gujarat-India
| |
Collapse
|
9
|
Bayat M, Saeni V, Masoumi M, Hosseini FS. One-Pot Synthesis of Dihydroxyindeno[1,2-d]Imidazoles and Naphthoquinone Substituted Indandione and Oxindole Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2033801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Vosough Saeni
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Milad Masoumi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Fahimeh Sadat Hosseini
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
10
|
Jadhav CK, Nipate AS, Chate AV, Kulkarni MV, Gill CH. Microwave-Assisted Chemistry: New Synthetic Application for the Rapid Construction of 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Dione Derivatives in Diisopropyl Ethyl Ammonium Acetate. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.2021252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chetan K. Jadhav
- Department of Chemistry, Dr. Babasaheb Ambedkar, Marathwada University, Aurangabad, Maharashtra, India
| | - Amol S. Nipate
- Department of Chemistry, Dr. Babasaheb Ambedkar, Marathwada University, Aurangabad, Maharashtra, India
| | - Asha V. Chate
- Department of Chemistry, Dr. Babasaheb Ambedkar, Marathwada University, Aurangabad, Maharashtra, India
| | - Makrand V. Kulkarni
- Department of Chemistry, Dr. Babasaheb Ambedkar, Marathwada University, Aurangabad, Maharashtra, India
| | - Charansingh H. Gill
- Department of Chemistry, Dr. Babasaheb Ambedkar, Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
11
|
Neto BAD, Rocha RO, Rodrigues MO. Catalytic Approaches to Multicomponent Reactions: A Critical Review and Perspectives on the Roles of Catalysis. Molecules 2021; 27:132. [PMID: 35011363 PMCID: PMC8746711 DOI: 10.3390/molecules27010132] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/17/2023] Open
Abstract
In this review, we comprehensively describe catalyzed multicomponent reactions (MCRs) and the multiple roles of catalysis combined with key parameters to perform these transformations. Besides improving yields and shortening reaction times, catalysis is vital to achieving greener protocols and to furthering the MCR field of research. Considering that MCRs typically have two or more possible reaction pathways to explain the transformation, catalysis is essential for selecting a reaction route and avoiding byproduct formation. Key parameters, such as temperature, catalyst amounts and reagent quantities, were analyzed. Solvent effects, which are likely the most neglected topic in MCRs, as well as their combined roles with catalysis, are critically discussed. Stereocontrolled MCRs, rarely observed without the presence of a catalytic system, are also presented and discussed in this review. Perspectives on the use of catalytic systems for improved and greener MCRs are finally presented.
Collapse
Affiliation(s)
- Brenno A. D. Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (R.O.R.); (M.O.R.)
| | - Rafael O. Rocha
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (R.O.R.); (M.O.R.)
| | - Marcelo O. Rodrigues
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (R.O.R.); (M.O.R.)
- School of Physics and Astronomy, Nottingham University, Nottingham NG72RD, UK
| |
Collapse
|
12
|
Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green Chemistry in the Synthesis of Pharmaceuticals. Chem Rev 2021; 122:3637-3710. [PMID: 34910451 DOI: 10.1021/acs.chemrev.1c00631] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The principles of green chemistry (GC) can be comprehensively implemented in green synthesis of pharmaceuticals by choosing no solvents or green solvents (preferably water), alternative reaction media, and consideration of one-pot synthesis, multicomponent reactions (MCRs), continuous processing, and process intensification approaches for atom economy and final waste reduction. The GC's execution in green synthesis can be performed using a holistic design of the active pharmaceutical ingredient's (API) life cycle, minimizing hazards and pollution, and capitalizing the resource efficiency in the synthesis technique. Thus, the presented review accounts for the comprehensive exploration of GC's principles and metrics, an appropriate implication of those ideas in each step of the reaction schemes, from raw material to an intermediate to the final product's synthesis, and the final execution of the synthesis into scalable industry-based production. For real-life examples, we have discussed the synthesis of a series of established generic pharmaceuticals, starting with the raw materials, and the intermediates of the corresponding pharmaceuticals. Researchers and industries have thoughtfully instigated a green synthesis process to control the atom economy and waste reduction to protect the environment. We have extensively discussed significant reactions relevant for green synthesis, one-pot cascade synthesis, MCRs, continuous processing, and process intensification, which may contribute to the future of green and sustainable synthesis of APIs.
Collapse
Affiliation(s)
- Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Hans Sanderson
- Department of Environmental Science, Section for Toxicology and Chemistry, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.,Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
13
|
Saeni V, Bayat M, Hosseini FS. One‐pot synthesis of new functionalized
4
H
‐chromen‐4‐ylidene derivatives. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Vosough Saeni
- Department of Chemistry, Faculty of Science Imam Khomeini International University Qazvin Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science Imam Khomeini International University Qazvin Iran
| | - Fahimeh Sadat Hosseini
- Department of Chemistry, Faculty of Science Imam Khomeini International University Qazvin Iran
| |
Collapse
|
14
|
Amiri Z, Bayat M. Synthesis of acenaphtho[1',2':4,5]pyrrolo[2,3-d]pyrimidine derivatives via one-pot three-component reaction. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Annibaletto J, Martzel T, Levacher V, Oudeyer S, Brière J. Multicomponent Catalytic Enantioselective Synthesis of Isoxazolidin‐5‐Ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Thomas Martzel
- Normandie Univ UNIROUEN, INSA Rouen, CNRS, COBRA 76000 Rouen France
| | - Vincent Levacher
- Normandie Univ UNIROUEN, INSA Rouen, CNRS, COBRA 76000 Rouen France
| | - Sylvain Oudeyer
- Normandie Univ UNIROUEN, INSA Rouen, CNRS, COBRA 76000 Rouen France
| | | |
Collapse
|
16
|
Herraiz AG, Cramer N. Cobalt(III)-Catalyzed Diastereo- and Enantioselective Three-Component C–H Functionalization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03153] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ana G. Herraiz
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
18
|
Eisavi R, Naseri K. Preparation, characterization and application of MgFe 2O 4/Cu nanocomposite as a new magnetic catalyst for one-pot regioselective synthesis of β-thiol-1,4-disubstituted-1,2,3-triazoles. RSC Adv 2021; 11:13061-13076. [PMID: 35423852 PMCID: PMC8697271 DOI: 10.1039/d1ra01588e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Magnesium ferrite magnetic nanoparticles were synthesized by a solid-state reaction of magnesium nitrate, hydrated iron(iii) nitrate, NaOH and NaCl salts and then calcined at high temperatures. In order to prevent oxidation and aggregation of magnesium ferrite particles, and also for preparing a new catalyst of supported copper on the magnetic surface, the MgFe2O4 was covered by copper nanoparticles in alkaline medium. Magnetic nanoparticles of MgFe2O4/Cu were successfully obtained. The structure of the synthesized magnetic nanoparticles was identified using XRD, TEM, EDS, FT-IR, FESEM and VSM techniques. The prepared catalyst was used in the three component one-pot regioselective synthesis of 1,2,3-triazoles in water. The various thiiranes bearing alkyl, allyl and aryl groups with terminal alkynes, and sodium azide in the presence of the MgFe2O4/Cu nanocatalyst were converted to the corresponding β-thiolo/benzyl-1,2,3-triazoles as new triazole derivatives. The effects of different factors such as time, temperature, solvent, and catalyst amount were investigated, and performing the reaction using 0.02 g of catalyst in water at 60 °C was chosen as the optimum conditions. The recovered catalyst was used several times without any significant change in catalytic activity or magnetic property.
Collapse
Affiliation(s)
- Ronak Eisavi
- Department of Chemistry, Payame Noor University PO Box 19395-3697 Tehran Iran
| | - Kazhal Naseri
- Department of Chemistry, Payame Noor University PO Box 19395-3697 Tehran Iran
| |
Collapse
|
19
|
Sosulin IS, Tyurin DA, Feldman VI. A hydrogen-bonded CHF⋯HF complex: IR spectra and unusual photochemistry. J Chem Phys 2021; 154:104310. [PMID: 33722008 DOI: 10.1063/5.0041159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A hydrogen-bonded CHF⋯HF complex was characterized by FTIR matrix isolation spectroscopy and ab initio calculations. Three possible structures of this complex were found at the coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)/L3a_3] level of theory. The comparison between the experiment and theory reveals that the most stable structure with the binding energy of 6.48 kcal/mol is formed upon x-ray irradiation of isolated CH2F2 molecules in noble gas matrices (Ne, Ar, Xe). This species appears to be the first known intermolecular complex of monofluorocarbene, and its identification was unambiguously proved by IR absorptions corresponding to HF deformation (libration), CF stretching, H-C-F bending, and CH and HF stretching modes. It is worth noting that the corresponding spectral features in an argon matrix were previously tentatively ascribed to CH2F2 +· and HF⋯CHF-· [L. Andrews and F. T. Prochaska, J. Chem. Phys. 70, 4714 (1979)], but the calculations performed in the present study definitely support the re-assignment. The observed CHF⋯HF complex can be converted to the parent CH2F2 under the action of light with λ < 525 nm. The plausible mechanism of this conversion using the conical intersection concept is discussed.
Collapse
Affiliation(s)
- Ilya S Sosulin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Daniil A Tyurin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir I Feldman
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
20
|
Isocyanide-based MCRs: Diastereoselective cascade synthesis of perfluoroalkylated pyrano[3,4-c]pyrrole derivatives. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Oliveira GHC, Ramos LM, de Paiva RKC, Passos STA, Simões MM, Machado F, Correa JR, Neto BAD. Synthetic enzyme-catalyzed multicomponent reaction for Isoxazol-5(4 H)-one Syntheses, their properties and biological application; why should one study mechanisms? Org Biomol Chem 2021; 19:1514-1531. [PMID: 33332518 DOI: 10.1039/d0ob02114h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, we describe the application of a synthetic enzyme (synzyme) as the catalyst to promote the multicomponent synthesis of isoxazol-5(4H)-one derivatives. The catalytic system could be used up to 15 times without any notable loss of its activity. Some derivatives showed fluorescence and their photophysical data were evaluated. The mechanism of the reaction was, for the first time, investigated and, among the three reaction pathway possibilities, only one was operating under the developed conditions. ESI-MS(/MS) allowed for both the simultaneous monitoring of the multicomponent reaction (MCR) and the proposition of a kinetic model to explain the transformation. The kinetic model pointed firmly to only one reaction pathway and helped to discard the other two possibilities. The antimicrobial abilities of all synthesized derivatives against Gram-positive and Gram-negative strains were also evaluated. The abilities of functional chromophores (fluorescent compounds) as live cell-imaging probes were verified and one of the multicomponent adducts could stain early endosomes selectively in bioimaging experiments.
Collapse
Affiliation(s)
- Gabriela H C Oliveira
- Laboratório de Química Medicinal e Síntese Orgânica (LaQuiMeSO), Câmpus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, CP 459, Anápolis-GO, Brazil.
| | - Luciana M Ramos
- Laboratório de Química Medicinal e Síntese Orgânica (LaQuiMeSO), Câmpus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, CP 459, Anápolis-GO, Brazil.
| | - Raíssa K C de Paiva
- Laboratório de Química Medicinal e Síntese Orgânica (LaQuiMeSO), Câmpus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, CP 459, Anápolis-GO, Brazil.
| | - Saulo T A Passos
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitario Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil.
| | - Marina M Simões
- Laboratório de Microscopia e Microanálise, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Fabricio Machado
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitario Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil. and School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - José R Correa
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitario Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil. and Laboratório de Microscopia e Microanálise, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitario Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil.
| |
Collapse
|
22
|
Akbari M, Maleki A, Bahadorikhalili S, Taayoshi F, Adibpour N, Mahdavi M. Efficient synthesis of novel 2‐(
2‐chloroquinolin
‐3‐yl)imidazo[1,2‐a]pyridin‐3‐amine derivatives. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mosayeb Akbari
- Department of Medicinal Chemistry, School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology School of Pharmacy, Zanjan University of Medical Sciences Zanjan Iran
| | - Saeed Bahadorikhalili
- Endocrinology and Metabolism Clinical Sciences Institute, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Fahimeh Taayoshi
- Department of Medicinal Chemistry, School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| | - Neda Adibpour
- Department of Medicinal Chemistry, School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Clinical Sciences Institute, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
23
|
Rodrigues MO, Eberlin MN, Neto BAD. How and Why to Investigate Multicomponent Reactions Mechanisms? A Critical Review. CHEM REC 2021; 21:2762-2781. [PMID: 33538117 DOI: 10.1002/tcr.202000165] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Indexed: 01/03/2023]
Abstract
We review the most innovative efforts and greatest challenges faced when elucidating multicomponent reactions (MCRs) mechanisms. When compared to traditional reactions, the often two or more concurrent reactions pathways and the greater number of possible intermediates in MCRs turn their mechanistic investigation both a harder and trickier task. The common approaches used to investigate reaction mechanisms are often unable to clarify MCRs mechanisms; hence few but clever approaches are currently used to determine these mechanisms and to depict their key transformations. Their complexity has required most innovative approaches and the use of a number of unique techniques that have shed light over the favored pathway selected from the myriad of alternatives theoretically available for MCRs. This review focuses on the most successful efforts applied by a few leading groups to perform these puzzlingly investigations.
Collapse
Affiliation(s)
- Marcelo O Rodrigues
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil.,School of Physics and Astronomy, Nottingham University, NG72RD, Nottingham, U.K
| | - Marcos N Eberlin
- MackMass Laboratory, PPGENM, School of Engineering, Mackenzie Presbyterian University, São Paulo, SP, 01302-907, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil
| |
Collapse
|
24
|
Mardazad N, Khorshidi A, Fallah Shojaei A. Efficient one-pot synthesis and dehydrogenation of tricyclic dihydropyrimidines catalyzed by OMS-2-SO 3H, and application of the functional-chromophore products as colorimetric chemosensors. RSC Adv 2021; 11:12349-12360. [PMID: 35423781 PMCID: PMC8697086 DOI: 10.1039/d1ra01005k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/23/2021] [Indexed: 11/04/2022] Open
Abstract
An efficient and convenient one-pot multicomponent reaction (MCR) for the synthesis and dehydrogenation of tricyclic dihydropyrimidine derivatives, catalyzed by –SO3H functionalized octahedral manganese oxide molecular sieves (OMS-2-SO3H) as a novel solid acid catalyst, is reported. All of the organic products and the catalyst were unambiguously characterized with conventional techniques including Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction analysis (XRD), 1H NMR, and 13C NMR spectroscopy. The targeted dehydrogenated chromophore compounds were successfully used as colorimetric chemosensors for detection of transition metals in aqueous solution. For example, 1-[4-(4-hydroxy-3-methoxy-phenyl)-2-methyl-benzo[4,5]imidazo[1,2-a]pyrimidin-3-yl]-ethanone (7d), exhibited high sensitivity and selectivity toward detection of Cr3+ over a panel of other transition metal cations. The interference of foreign ions was found to be negligible. It was found that a 1 : 1 complex of Cr3+ and 7d is responsible for the color change of the solution from ochre to brown. These newly devised chemosensors can also exhibit significant wavelength shifts (up to 100 nm) when used as pH indicators. 7d for example, showed a vivid and sharp color change from pink to yellow in the pH range of 4 to 6. Hyperconjugated products of dihydropyrimidines may act as colorimetric chemosensors.![]()
Collapse
Affiliation(s)
- Neda Mardazad
- Department of Chemistry
- Faculty of Sciences
- University of Guilan
- Rasht
- Iran
| | - Alireza Khorshidi
- Department of Chemistry
- Faculty of Sciences
- University of Guilan
- Rasht
- Iran
| | | |
Collapse
|
25
|
Zhang XL, Feng KX, Hu JL, Shen QY, Huang WS, Xia AB, Li C, Xu DQ. One-pot asymmetric synthesis of a hexahydrophenanthridine scaffold containing five stereocenters via an organocatalytic quadruple-cascade reaction. NEW J CHEM 2021. [DOI: 10.1039/d0nj03946b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An organocatalytic enantioselective aza-Michael-Michael-Michael/aldol cyclization quadruple-cascade reaction of 2-amino-β-nitrostyrenes and α,β-unsaturated aldehydes has been developed for the construction of fully substituted hexahydrophenanthridine.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Kai-Xiang Feng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jian-Liang Hu
- Hangzhou Grascent Co., Ltd
- Meicheng Town 311604
- P. R. China
| | - Qiao-Yu Shen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | | | - Ai-Bao Xia
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Chen Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Dan-Qian Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
26
|
Tran KM, Nguyen NHK, Bui TT, To TA, Phan NTS, Le HV, Nguyen TT. Synthesis of primary N-arylthioglyoxamides from anilines, elemental sulfur and primary C-H bonds in acetophenones. RSC Adv 2020; 10:44743-44746. [PMID: 35516277 PMCID: PMC9058611 DOI: 10.1039/d0ra08740h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
A simple method for coupling of anilines, acetophenones, and elemental sulfur to afford N-arylthioglyoxamides has been developed. Reactions proceeded in the presence of Na2SO3 and DMSO, thus eliminating the need for transition metals and external oxidants. Functionalities such as halogen, ester, methylthio, and heterocycle groups were compatible with the conditions. Electron-poor acetophenones sometimes gave isosteric glyoxamides. Sulfurative coupling of acetophenones and aniline in the presence of Na2SO3 and DMSO solvent to afford N-arylthioglyoxamides was developed.![]()
Collapse
Affiliation(s)
- Khoa M Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Nguyen H K Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Thuy T Bui
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Tuong A To
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Nam T S Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Ha V Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
27
|
Jadhav C, Nipate AS, Chate AV, Dofe VS, Sangshetti JN, Khedkar VM, Gill CH. Rapid Construction of Substituted Dihydrothiophene Ureidoformamides at Room Temperature Using Diisopropyl Ethyl Ammonium Acetate: A Green Perspective. ACS OMEGA 2020; 5:29055-29067. [PMID: 33225136 PMCID: PMC7675536 DOI: 10.1021/acsomega.0c03575] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/22/2020] [Indexed: 05/26/2023]
Abstract
An economic, sustainable, and straightforward environmentally friendly synthesis of highly diversified polyfunctional dihydrothiophenes is successfully achieved via diisopropyl ethyl ammonium acetate as a room-temperature ionic liquid. Multicomponent synthesis contains domino processes; the benefit of this present protocol is highlighted by its readily available starting materials, superior functional group tolerance, purity of synthesized compounds was checked by high-performance liquid chromatography results in up to 99.7% purity for the synthesized compounds, reaction mass efficiency, effective mass yield, and excellent atom economy. In addition, a series of 2-(N-carbamoyl acetamide)-substituted 2,3-dihydrothiophene analogs were synthesized, and selected samples were chosen for testing their in vitro antibacterial and antifungal activities. Furthermore, a molecular docking study against sterol 14α-demethylase could provide valuable insight into the mechanism of antifungal action providing an opportunity for structure-based lead optimization.
Collapse
Affiliation(s)
- Chetan
K. Jadhav
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, Maharashtra, India
| | - Amol S. Nipate
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, Maharashtra, India
| | - Asha V Chate
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, Maharashtra, India
| | - Vidya S. Dofe
- Department
of Chemistry, Deogiri College of Science, Aurangabad 431005, Maharashtra, India
| | - Jaiprakash N. Sangshetti
- Department
of Pharmaceutical Chemistry, Y. B. Chavan
College of Pharmacy, Dr. Rafiq Zakaria
Campus, Aurangabad 431 001, India
| | - Vijay M. Khedkar
- Department
of Pharmaceutical Chemistry, School of Pharmacy, Vishwakarma University, Pune 411048, India
| | - Charansingh. H. Gill
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, Maharashtra, India
| |
Collapse
|
28
|
Taheri-Ledari R, Esmaeili MS, Varzi Z, Eivazzadeh-Keihan R, Maleki A, Shalan AE. Facile route to synthesize Fe 3O 4@acacia-SO 3H nanocomposite as a heterogeneous magnetic system for catalytic applications. RSC Adv 2020; 10:40055-40067. [PMID: 35520839 PMCID: PMC9057486 DOI: 10.1039/d0ra07986c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 11/21/2022] Open
Abstract
In this work, a novel catalytic system for facilitating the organic multicomponent synthesis of 9-phenyl hexahydroacridine pharmaceutical derivatives is reported. Concisely, this catalyst was constructed from acacia gum (gum arabic) as a natural polymeric base, iron oxide magnetic nanoparticles (Fe3O4 NPs), and sulfone functional groups on the surface as the main active catalytic sites. Herein, a convenient preparation method for this nanoscale composite is introduced. Then, essential characterization methods such as various spectroscopic analyses and electron microscopy (EM) were performed on the fabricated nano-powder. The thermal stability and magnetic properties were also precisely monitored via thermogravimetric analysis (TGA) and vibrating-sample magnetometry (VSM) methods. Then, the performance of the presented catalytic system (Fe3O4@acacia-SO3H) was further investigated in the referred organic reaction by using various derivatives of the components involved in the reaction. Optimization, mechanistic studies, and reusability screening were carried out for this efficient catalyst as well. Overall, remarkable reaction yields (94%) were obtained for the various produced derivatives of 9-phenyl hexahydroacridine in the indicated optimal conditions.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST) Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Mir Saeed Esmaeili
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST) Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Zahra Varzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST) Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST) Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST) Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI) P. O. Box 87 Helwan Cairo 11421 Egypt
- BCMaterials, Basque Center for Materials, Applications and Nanostructures Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n Leioa 48940 Spain
| |
Collapse
|
29
|
Masoumi M, Bayat M, Hosseini FS. One-pot multi-component synthesis of new bis-pyridopyrimidine and bis-pyrimidoquinolone derivatives. Heliyon 2020; 6:e05047. [PMID: 33033771 PMCID: PMC7536303 DOI: 10.1016/j.heliyon.2020.e05047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/29/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023] Open
Abstract
A variety of bis-heterocycles such as bis(pyrimido[4,5-b]quinolone), bis(chromeno[3′,4':5,6]pyrido[2,3-d]pyrimidine), bis(pyrido[2,3-d:6,5-d']dipyrimidine), and bis(benzo[g]pyrimido[4,5-b]quinolone) derivatives were synthesized via one-pot, multi-component reaction of various 6-aminouracils or 6-aminothiouracils, terephthalaldehyde, and CH-acids such as 4-hydroxycoumarin, dimedone, 2-hydroxy-1,4-naphthoquinone, barbituric acid, and thiobarbituric acid in EtOH as a solvent at reflux. The mild conditions, fast rate of reaction, absence of catalyst, different functional group compatibility, simple operation and work-up involving no chromatographic process, are worth mentioning.
Collapse
Affiliation(s)
- Milad Masoumi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Fahimeh Sadat Hosseini
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
30
|
Tailor YK, Khandelwal S, Verma K, Gopal R, Kumar M. Multicomponent synthesis of dispiroheterocycles using a magnetically separable and reusable heterogeneous catalyst. RSC Adv 2020; 10:36713-36722. [PMID: 35517964 PMCID: PMC9057058 DOI: 10.1039/d0ra06676a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Dispiroheterocycles have been synthesized by pseudo-four component reaction of 6-aminouracil/6-amino-2-thiouracil/2-amino-1,3,4-thiadiazole, p-toluidine and isatins in an ethanol-water mixture as solvent using β-cyclodextrin functionalized Fe3O4 nanoparticles as a magnetically separable and reusable heterogeneous catalyst. The nanocatalyst was synthesized and characterized by physicochemical characterization including Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD).
Collapse
Affiliation(s)
- Yogesh Kumar Tailor
- Department of Chemistry, University of Rajasthan Jaipur India +91-0141-2702720
| | - Sarita Khandelwal
- Department of Chemistry, University of Rajasthan Jaipur India +91-0141-2702720
| | - Kanchan Verma
- Department of Chemistry, University of Rajasthan Jaipur India +91-0141-2702720
| | - Ram Gopal
- Department of Chemistry, University of Rajasthan Jaipur India +91-0141-2702720
| | - Mahendra Kumar
- Department of Chemistry, University of Rajasthan Jaipur India +91-0141-2702720
| |
Collapse
|
31
|
Razavi ZS, Bayat M, Hosseini H. Synthesis of highly functionalized thiazolo[3,2- a]pyridine derivatives via a five-component cascade reaction based on nitroketene N, S-acetal. RSC Adv 2020; 10:31039-31048. [PMID: 35520681 PMCID: PMC9056361 DOI: 10.1039/d0ra03910a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/16/2020] [Indexed: 12/22/2022] Open
Abstract
A highly efficient and straightforward synthesis of N-fused heterocyclic compounds including 5-amino-7-(aryl)-8-nitro-N'-(1-(aryl)ethylidene)-3,7-dihydro-2H-thiazolo[3,2-a]pyridine-6-carbohydrazide derivatives is successfully achieved via a five-component cascade reaction utilizing cyanoacetohydrazide, various acetophenones, aromatic aldehydes, 1,1-bis(methylthio)-2-nitroethylene and cysteamine hydrochloride in ethanol at reflux conditions. The new approach involves domino N,S-acetal formation, Knoevenagel condensation, Michael reaction, imine–enamine tautomerization and N-cyclization sequences. The prominent advantages of this protocol include: facility of operation, available and economical starting materials, no need for toxic solvents, high yields and tolerance of a wide variety of functional groups. Easy construction of novel and highly substituted thiazolo[3,2-a]pyridine hydrazone compounds using keten N,S-acetals.![]()
Collapse
Affiliation(s)
- Zohreh Sahhaf Razavi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran
| | - Hajar Hosseini
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran
| |
Collapse
|
32
|
Paczkowski IM, Guedes EP, Mass EB, Meneses EW, Marques LA, Mantovani MS, Russowsky D. Synthesis of hybrid perillyl‐4
H
‐pyrans. Cytotoxicity evaluation against hepatocellular carcinoma
HepG2
/
C3A
cell line. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ingrid M. Paczkowski
- Laboratório de Sínteses Orgânicas, Instituto de QuímicaDepartamento de Química Orgânica, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Esthéfani P. Guedes
- Laboratório de Sínteses Orgânicas, Instituto de QuímicaDepartamento de Química Orgânica, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Eduardo B. Mass
- Laboratório de Sínteses Orgânicas, Instituto de QuímicaDepartamento de Química Orgânica, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Eliana W. Meneses
- Laboratório de Sólidos & Superfícies, Instituto de Química, Departamento de Química InorgânicaUniversidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Lilian A. Marques
- Laboratório de Genética Toxicológica, Centro de Ciências Biológicas, Departamento de Biologia GeralUniversidade Estadual de Londrina Rodovia Celso Garcia, Londrina Brazil
| | - Mário S. Mantovani
- Laboratório de Genética Toxicológica, Centro de Ciências Biológicas, Departamento de Biologia GeralUniversidade Estadual de Londrina Rodovia Celso Garcia, Londrina Brazil
| | - Dennis Russowsky
- Laboratório de Sínteses Orgânicas, Instituto de QuímicaDepartamento de Química Orgânica, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
33
|
Ravindran J, Yadhukrishnan VO, Asha RS, Lankalapalli RS. Dienaminodioate based multicomponent reactions with post-benzylic oxidative transformations mediated by DDQ. Org Biomol Chem 2020; 18:3927-3937. [PMID: 32409804 DOI: 10.1039/d0ob00721h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multicomponent reactions (MCRs) using dienaminodioate with post-benzylic oxidative transformation mediated by DDQ that afforded a diverse array of products are described. An unprecedented rearrangement of 1,2-dihydropyridines (1,2-DHPs), 3CR products, to 2-pyridones in good yields with a broad substrate scope by DDQ-mediated benzylic oxidation via a pyridinium intermediate is reported. Treatment of the pyridinium intermediate with tert-butyl isocyanide afforded isomerized 1,2-DHPs, analogous to Ritter amides. Further diversification using 3CR products bearing a benzylic group, predictably, promoted the synthesis of 2-pyridone with a benzylideneamine group and a benzo[d]oxazole appended biaryl group by DDQ. A formal 1,6-reduction product from 2-pyridone in the presence of NaBH4 is also observed.
Collapse
Affiliation(s)
- Jaice Ravindran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Velickakathu O Yadhukrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India.
| | - Reghuvaran S Asha
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India.
| | - Ravi S Lankalapalli
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
34
|
Cao M, Fang YL, Wang YC, Xu XJ, Xi ZW, Tang S. Ce(OTf) 3-Catalyzed Multicomponent Reaction of Alkynyl Carboxylic Acids, tert-Butyl Isocyanide, and Azides for the Assembly of Triazole-Oxazole Derivatives. ACS COMBINATORIAL SCIENCE 2020; 22:268-273. [PMID: 32275136 DOI: 10.1021/acscombsci.0c00012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cerium(III) triflate-catalyzed multicomponent reactions between alkynyl carboxylic acids, tert-butyl isocyanide, and organic azides have been developed. In the presence of Ce(OTf)3 (10 mol %), the cascade reaction of one molecule of alkynyl carboxylic acid with three molecules of tert-butyl isocyanides proceeds chemoselectively and regioselectively via a triple and ordered isocyanide insertion process at room temperature, and then the cesium-catalyzed [3 + 2] cycloaddtion reaction between the resulted alkynyl oxazole and organic azides was further initiated by the temperature elevation (100 °C), thereby leading to multisubstituted triazole-oxazole derivatives in practical, time-saving, one-pot operations. Furthermore, some of the synthesized target compounds showed potential anticancer activities against MGC803 (human gastric cancer cell) with IC50 values below 20 μmol L-1.
Collapse
Affiliation(s)
- Ming Cao
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, People’s Republic of China
| | - Yi-Lin Fang
- Department of Chemistry, Guilin Normal College, 9 Feihu Road, Guilin, 541199, People’s Republic of China
| | - Ying-Chun Wang
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, People’s Republic of China
| | - Xiao-Juan Xu
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, People’s Republic of China
| | - Zhi-Wei Xi
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, People’s Republic of China
| | - Shi Tang
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, People’s Republic of China
| |
Collapse
|
35
|
Costanzo P, Nardi M, Oliverio M. Similarity and Competition between Biginelli and Hantzsch Reactions: an Opportunity for Modern Medicinal Chemistry. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Paola Costanzo
- Department of Health Sciences; University Magna Graecia of Catanzaro; Viale Europa - Loc. Germaneto 88100 Catanzaro Italy
| | - Monica Nardi
- Department of Health Sciences; University Magna Graecia of Catanzaro; Viale Europa - Loc. Germaneto 88100 Catanzaro Italy
| | - Manuela Oliverio
- Department of Health Sciences; University Magna Graecia of Catanzaro; Viale Europa - Loc. Germaneto 88100 Catanzaro Italy
| |
Collapse
|
36
|
A Concise Approach to N-Substituted Rhodanines through a Base-Assisted One-Pot Coupling and Cyclization Process. Molecules 2020; 25:molecules25051138. [PMID: 32143323 PMCID: PMC7179173 DOI: 10.3390/molecules25051138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/04/2022] Open
Abstract
An efficient approach to obtain functionalized rhodanines was developed through a base-assisted one-pot coupling and continuous cyclization of a primary amine, carbon disulfide, and methyl (2-chloroacetyl)carbamate. This conversion tolerates a broad range of functional groups and can be used to scale the preparation of N-substituted rhodanines in excellent yields.
Collapse
|
37
|
Nasri S, Bayat M, Farahani HV, Karami S. Synthesis of new functionalized thiazolo pyridine-fused and thiazolo pyridopyrimidine-fused spirooxindoles via one-pot reactions. Heliyon 2020; 6:e03687. [PMID: 32258502 PMCID: PMC7114753 DOI: 10.1016/j.heliyon.2020.e03687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 11/29/2022] Open
Abstract
A sequential multi-component reaction of the nitroketene dithioacetals, cysteamine hydrochloride, isatin and different CH-acids is described. This efficient method provides new functionalized thiazolo pyridine-fused spirooxindoles and thiazolo pyridopyrimidine-fused spirooxindoles in good yields. In the case of using isatin derivatives (5-bromoisatin and 5-chloroisatin), the reaction was carried out by using nano-SiO2 (20 mol%) as an effective heterogeneous Lewis acid promoter. This type of reaction provides a range of skeletally different polycyclic spiro thiazole-based heterocyclic structures and represents attractive advantages including straightforward one-pot operation under the catalyst-free condition and simple workup procedures without using tedious purification procedure.
Collapse
Affiliation(s)
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | | | | |
Collapse
|
38
|
Rocha R, Rodrigues MO, Neto BAD. Review on the Ugi Multicomponent Reaction Mechanism and the Use of Fluorescent Derivatives as Functional Chromophores. ACS OMEGA 2020; 5:972-979. [PMID: 31984252 PMCID: PMC6977082 DOI: 10.1021/acsomega.9b03684] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/23/2019] [Indexed: 05/05/2023]
Abstract
In the present mini-review we discuss the findings, controversies, and gaps observed for the Ugi four-component reaction. The Ugi multicomponent reaction, performed by mixing an aldehyde, an amine, a carboxylic acid, and an isocyanide, is among the most important isocyanide-based multicomponent reactions (MCRs), allowing multiple bond formations (C-C and C-N) in a single synthetic step. The possibility of two reaction pathways and the little understood solvent effect over this transformation renders this reaction as one of the hardest challenges to overcome. The little knowledge of the mechanism of the Ugi MCR hinders the development of new and efficient chiral catalytic systems to further the application of the derivatives obtained by enantioselective versions. The asymmetric transformation is in this context a bigger challenge, and little is known about the mechanism of these few available versions. The new trend of functional chromophore synthesis by MCRs is also highlighted, and the few examples already disclosed in the literature exemplify the huge opportunity for investigation and creative ideas using the Ugi four-component reaction.
Collapse
Affiliation(s)
- Rafael
O. Rocha
- Laboratory
of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy
Ribeiro, Brasília, Distrito Federal 70904-970, Brazil
| | | | - Brenno A. D. Neto
- Laboratory
of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy
Ribeiro, Brasília, Distrito Federal 70904-970, Brazil
- E-mail:
| |
Collapse
|
39
|
Nunes PSG, Vidal HDA, Corrêa AG. Recent advances in catalytic enantioselective multicomponent reactions. Org Biomol Chem 2020; 18:7751-7773. [PMID: 32966520 DOI: 10.1039/d0ob01631d] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multicomponent reactions (MCRs) undoubtedly correspond to one of the synthetic strategies that best fit the new demands of chemistry for presenting high atom economy and enabling molecular diversity. However, many challenges still exist when products possessing stereogenic centres are formed. The field of asymmetric catalytic reactions has achieved significant progress in recent decades; new applications for chiral ligands and catalysts have been demonstrated and new catalysts have been specifically designed for challenging chemical conversions. In this sense, highly efficient approaches for classic multicomponent reactions such as the Ugi reaction and a number of new asymmetric MCRs have been described. In this review we discuss the recent developments that enable catalytic enantioselective MCRs including the proposed mechanistic pathways.
Collapse
Affiliation(s)
- Paulo Sérgio Gonçalves Nunes
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil.
| | | | | |
Collapse
|
40
|
Atar AB, Kang J, Jadhav AH. A [bmim]Cl-promoted domino protocol using an isocyanide-based [4+1]-cycloaddition reaction for the synthesis of diversely functionalized 3-alkylamino-2-alkyl/aryl/hetero-aryl indolizine-1-carbonitriles under solvent-free conditions. NEW J CHEM 2020. [DOI: 10.1039/c9nj05738b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A room temperature-based ionic liquid [bmim]Cl-catalyzed multicomponent coupling strategy for the synthesis of 3-alkylamino-2-alkyl/aryl/hetero-aryl indolizine-1-carbonitrile derivatives under mild conditions is shown.
Collapse
Affiliation(s)
- Amol Balu Atar
- Department of Chemistry
- Sejong University
- Seoul 143-747
- South Korea
| | - Jongmin Kang
- Department of Chemistry
- Sejong University
- Seoul 143-747
- South Korea
| | - Arvind H. Jadhav
- Centre for Nano and Material Science (CNMS)
- Jain University
- Bangalore 562112
- India
| |
Collapse
|
41
|
Dong L, Chen FE. Asymmetric catalysis in direct nitromethane-free Henry reactions. RSC Adv 2020; 10:2313-2326. [PMID: 35494598 PMCID: PMC9048686 DOI: 10.1039/c9ra10263a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/06/2020] [Indexed: 11/21/2022] Open
Abstract
This review summarizes the current state and applications of catalytic Henry reactions involving complex nitroalkanes coupling with various carbonyl compounds to generate chiral β-nitro alcohol scaffolds with four adjacent stereogenic centers.
Collapse
Affiliation(s)
- Lin Dong
- Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. of China
| | - Fen-Er Chen
- Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. of China
| |
Collapse
|
42
|
Hosseini FS, Bayat M, Afsharnezhad M. Rapid and catalyst free synthesis of new bis(benzo[ g]chromene) and bis(pyrano[3,2- c]chromene) derivatives and optimization of reaction conditions using response surface methodology. RSC Adv 2019; 9:39466-39474. [PMID: 35540678 PMCID: PMC9076105 DOI: 10.1039/c9ra07809f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/25/2019] [Indexed: 01/11/2023] Open
Abstract
4,4'-(1,4-phenylene)bis(2-(alkylamino)-3-nitro-4H-benzo[g]chromene-5,10-dione) and 4,4'-(1,4-phenylene)bis(2-(alkylamino)-3-nitropyrano[3,2-c]chromen-5(4H)-one) derivatives are synthesized by a one-pot, multi-component reaction of N-alkyl-1-(methylthio)-2-nitroethenamine (derived from the reaction of various amines and 1,1-bis(methylthio)-2-nitroethene) with terephthalaldehyde or isophthalaldehyde, and 2-hydroxy-1,4-naphthoquinone or 4-hydroxycoumarin in EtOH/H2O (85 : 15) as the solvent at 89 °C. Response surface methodology (RSM) is used to investigate the effect of reaction temperature and water content of aqueous ethanol on the product yields and reaction time. The notable features of this work are the optimization of reaction conditions with minimal experiments, absence of catalyst, good yields, simple work-up and the non-chromatographic purification of products.
Collapse
Affiliation(s)
- Fahimeh Sadat Hosseini
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran +98 28 33780040
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran +98 28 33780040
| | - Milad Afsharnezhad
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran +98 28 33780040
| |
Collapse
|
43
|
Kordnezhadian R, Shekouhy M, Khalafi-Nezhad A. DBU-functionalized MCM-41-coated nanosized hematite (DBU-F-MCM-41-CNSH): a new magnetically separable basic nanocatalyst for the diastereoselective one-pot four-component synthesis of 2-( N-carbamoylacetamide)-substituted 2,3-dihydrothiophenes. NEW J CHEM 2019. [DOI: 10.1039/c9nj04714j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Conversion of DBU from a nonrecoverable liquid base to a magnetically separable solid catalyst and its application for the diastereoselective multicomponent synthesis of 2-(N-carbamoylacetamide)-substituted 2,3-dihydrothiophenes.
Collapse
Affiliation(s)
- Reza Kordnezhadian
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz 71454
- Iran
| | - Mohsen Shekouhy
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz 71454
- Iran
| | - Ali Khalafi-Nezhad
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz 71454
- Iran
| |
Collapse
|
44
|
Rushell E, Tailor YK, Khandewal S, Verma K, Agarwal M, Kumar M. Deep eutectic solvent promoted synthesis of structurally diverse hybrid molecules with privileged heterocyclic substructures. NEW J CHEM 2019. [DOI: 10.1039/c9nj02694k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Structurally diverse hybrid molecules; indenopyrroloimidazoles, imidazoindoles, chromenopyrroloimidazoles and imidazopyrrlopyrimidines, have been synthesized using DES as a sustainable solvent and promoter.
Collapse
Affiliation(s)
- Esha Rushell
- Department of Chemistry
- University of Rajasthan
- Jaipur-302004
- India
| | | | - Sarita Khandewal
- Department of Chemistry
- University of Rajasthan
- Jaipur-302004
- India
| | - Kanchan Verma
- Department of Chemistry
- University of Rajasthan
- Jaipur-302004
- India
| | - Monu Agarwal
- Department of Chemistry
- University of Rajasthan
- Jaipur-302004
- India
| | - Mahendra Kumar
- Department of Chemistry
- University of Rajasthan
- Jaipur-302004
- India
| |
Collapse
|