1
|
Mageed AH, Al-Ameed K. Synthesis, structural studies and computational evaluation of cyclophanes incorporating imidazole-2-selones. RSC Adv 2023; 13:17282-17296. [PMID: 37323874 PMCID: PMC10265033 DOI: 10.1039/d3ra02913a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
We report new cyclophanes containing imidazole-2-selone groups linked by xylylene rings. A set of imidazole-2-selone cyclophanes is synthesized by reaction corresponding to imidazolium cyclophanes with selenium in the presence of K2CO3. The structural behavior of the new imidazole-2-selone cyclophanes was determined by 1H and 13C NMR spectra and X-ray diffraction studies. Cyclophanes incorporating o-xylylene or mesitylene-m-cyclophane linked by selone groups were mutually syn in both the solid state and solution, and the cyclophanes showed a conformation similar to the cone conformation of calix[4]arenes. Cyclophanes incorporating p-xylylene or m-xylylene linked by selone groups showed two conformations in the solution: one mutually syn and the other mutually anti. There was no interconversion for both conformations observed on the NMR timescale. In the solid state, three conformations were detected for the p-xylylene-linked cyclophane: one is mutually syn and the other two are mutually anti and partial cone conformations. In the m-xylylene-linked case, only anti-conformation was characterized in the solid state. A density functional analysis was conducted to interpret the stability of the studied compounds and shed light on their origin. The energy preference analysis is in consistent agreement with the observed geometries and their co-existence.
Collapse
Affiliation(s)
- Ahmed Hassoon Mageed
- Department of Chemistry, Faculty of Science, The University of Kufa P. O. Box 21 Najaf 54001 Iraq
| | - Karrar Al-Ameed
- Department of Chemistry, Faculty of Science, The University of Kufa P. O. Box 21 Najaf 54001 Iraq
| |
Collapse
|
2
|
Soni A, Sharma C, Negi L, Joshi RK. NHC-Pd(II) full pincer catalyzed Mizoroki-Heck Type Cross-Coupling of Vinyl Chloride and Alkenes: Synthesis of Novel Ferrocenylated Conjugated Dienes. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2022.122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Sharma D, Tomar V, Sharma C, Nemiwal M, Joshi RK. Direct amidation of ferrocenyl/ phenyl β-chlorocinnamaldehyde assisted by chalcogenide metal carbonyl cluster. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Arora A, Oswal P, Sharma D, Tyagi A, Purohit S, Sharma P, Kumar A. Molecular Organosulphur, Organoselenium and Organotellurium Complexes as Homogeneous Transition Metal Catalytic Systems for Suzuki Coupling. ChemistrySelect 2022. [DOI: 10.1002/slct.202201704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aayushi Arora
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Preeti Oswal
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Deepali Sharma
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Anupma Tyagi
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Suraj Purohit
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Pankaj Sharma
- Instituto de Química National Autonomous University of Mexico (UNAM) Circuito Exterior Mexico 04510
| | - Arun Kumar
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| |
Collapse
|
5
|
Sharma D, Tomar V, Sharma C, Nemiwal M, Joshi RK. Direct Amidation of Ferrocenyl/ Phenyl β- Chlorocinnamaldehyde Assisted by Chalcogenide Metal Carbonyl Cluster. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Souri SM, Eidi E, Kassaee MZ. Efficient Suzuki coupling over novel magnetic nanoparticle: Fe 3O 4/L-(+)-tartaric acid/Pd(0). Mol Divers 2022:10.1007/s11030-022-10507-4. [PMID: 36001224 DOI: 10.1007/s11030-022-10507-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
A new eco-friendly catalytic system is devised for C-C bond formation through Suzuki coupling, using an impressive nanocatalyst (Fe3O4/L-(+)-tartaric acid/Pd-NPs). It contains immobilized palladium (0) onto magnetite nanoparticles, stabilized by tartaric acid, and is characterized by FT-IR, XRD, EDS, SEM, TEM, TGA, and VSM. The catalyst is used in an efficient synthesis of biaryls in EtOH/H2O (1:1), in the presence of K2CO3. Our Fe3O4/tartaric acid/Pd-NPs exhibit magnetic recoverability and reusability for five cycles without measurable loss of its activity.
Collapse
Affiliation(s)
| | - Esmaiel Eidi
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
7
|
Kumari S, Sharma C, Satrawala N, Srivastava AK, Sharma KN, Joshi RK. Selenium-Directed Ortho C–H Activation of Benzyl Selenide by a Selenated NHC–Half-Pincer Ruthenium(II) Complex. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sangeeta Kumari
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Charu Sharma
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Naveen Satrawala
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Avinash K. Srivastava
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Kamal N. Sharma
- Department of Chemistry, Amity School of Applied Sciences, Amity University, Haryana, Manesar, Gurugram 122413, Haryana, India
| | - Raj K. Joshi
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| |
Collapse
|
8
|
Nair PP, Jayaraj A, Swamy P CA. Recent Advances in Benzimidazole Based NHC‐Metal Complex Catalysed Cross‐Coupling Reactions**. ChemistrySelect 2022. [DOI: 10.1002/slct.202103517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pravya P. Nair
- Main group Organometallics Materials Supramolecular Chemistry and Catalysis lab Department of Chemistry National Institute of Technology Calicut 673601 India
- Institute for Integrated programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
| | - Anjitha Jayaraj
- Main group Organometallics Materials Supramolecular Chemistry and Catalysis lab Department of Chemistry National Institute of Technology Calicut 673601 India
| | - Chinna Ayya Swamy P
- Main group Organometallics Materials Supramolecular Chemistry and Catalysis lab Department of Chemistry National Institute of Technology Calicut 673601 India
| |
Collapse
|
9
|
Xianghui M, Liangru Y, Qilin L, Zhenhua D, Jinwei Y, Yongmei X, Pu M. Amide Functionalized Pyridine/Pyrimidine Chelating N-Heterocyclic Carbene Palladium Complexes: Synthesis, Structure, and Catalysis for C-5 Arylation of Imidazoles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Vidal M, Rodríguez‐Aguilar J, Aburto I, Aliaga C, Domínguez M. Reactivity of 4‐pyrimidyl Sulfonic Esters in Suzuki‐Miyaura Cross‐Coupling Reactions in Water Under Microwave Irradiation. ChemistrySelect 2021. [DOI: 10.1002/slct.202103280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matías Vidal
- Facultad de Química y Biología Universidad de Santiago de Chile Av. Bernardo O'Higgins 3363 Santiago Chile
| | - José Rodríguez‐Aguilar
- Facultad de Química y Biología Universidad de Santiago de Chile Av. Bernardo O'Higgins 3363 Santiago Chile
| | - Ignacio Aburto
- Facultad de Química y Biología Universidad de Santiago de Chile Av. Bernardo O'Higgins 3363 Santiago Chile
| | - Carolina Aliaga
- Facultad de Química y Biología Universidad de Santiago de Chile Av. Bernardo O'Higgins 3363 Santiago Chile
- Centro de Nanociencia y Nanotecnología CEDENNA Universidad de Santiago de Chile Av. Bernardo O'Higgins 3363 Santiago Chile
| | - Moisés Domínguez
- Facultad de Química y Biología Universidad de Santiago de Chile Av. Bernardo O'Higgins 3363 Santiago Chile
| |
Collapse
|
11
|
Tomar V, Sharma C, Nemiwal M, Joshi RK. Synthesis of novel ferrocenated enynes via the Sonogashira coupling of ferrocenated vinyllic chlorides and alkyne in the catalytic presence of selenated NHC-Pd(II) full pincer complex under Cu and amine free aerobic conditions. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Lin W, Zhang L, Ma Y, Liang T, Sun W. Sterically enhanced 2‐iminopyridylpalladium chlorides as recyclable ppm‐palladium catalyst for Suzuki–Miyaura coupling in aqueous solution. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenhua Lin
- School of Textiles Science and Engineering Jiangnan University Wuxi China
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - Liping Zhang
- School of Textiles Science and Engineering Jiangnan University Wuxi China
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - Tongling Liang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - Wen‐Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry Chinese Academy of Sciences Beijing China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou China
| |
Collapse
|
13
|
Chauhan RS, Nagar S, Chatterjee S, Goswami D, Cordes DB, Slawin AMZ, Tawde T. Synthesis of Palladium complexes derived from Amido linked N‐Heterocyclic Carbenes and their use in Suzuki cross coupling reactions. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rohit Singh Chauhan
- Department of Chemistry K. J. Somaiya College of Science & Commerce Mumbai 400077
| | - Suryakant Nagar
- Department of Chemistry K. J. Somaiya College of Science & Commerce Mumbai 400077
| | - Sucheta Chatterjee
- Bio-Organic Division Bhabha Atomic Research Centre, Anushakti Nagar Mumbai 400094
| | - Dibakar Goswami
- Bio-Organic Division Bhabha Atomic Research Centre, Anushakti Nagar Mumbai 400094
- HomiBhabha National Institute Training School Complex, Anushakti Nagar Mumbai 400094 India
| | - David B. Cordes
- East CHEM School of Chemistry University of St Andrews St Andrews, Fife KY16 9ST
| | | | - Trupti Tawde
- Department of Chemistry K. J. Somaiya College of Science & Commerce Mumbai 400077
| |
Collapse
|
14
|
Preformed molecular complexes of metals with organoselenium ligands: Syntheses and applications in catalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213885] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Arora A, Oswal P, Kumar Rao G, Kumar S, Kumar A. Organoselenium ligands for heterogeneous and nanocatalytic systems: development and applications. Dalton Trans 2021; 50:8628-8656. [PMID: 33954317 DOI: 10.1039/d1dt00082a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Organoselenium ligands have attracted great attention among researchers during the past two decades. Various homogeneous, heterogeneous and nanocatalytic systems have been designed using such ligands. Although reports on selenium ligated homogeneous catalysts are quite high in number, significant work has also been done on the development of heterogeneous and nanocatalytic systems using organoselenium ligands. A review article, focusing on the utility of organoselenium compounds in the development of catalytic systems, was published in 2012 (A. Kumar, G. K. Rao, F. Saleem and A. K. Singh, Dalton Trans., 2012, 41, 11949). Moreover, it mainly covered the homogeneous catalysts. There are no review articles in the literature on heterogeneous and nanocatalytic systems designed using organoselenium compounds and their applications. Hence, this perspective aims to cover the developments pertaining to the synthetic aspects of such catalytic systems (using organoselenium compounds) and their applications in catalysis of a variety of chemical transformations. Salient features and advantages of organoselenium compounds have also been highlighted to justify the rationale behind their use in catalyst development. Their performance in various chemical transformations [viz. Suzuki-Miyaura coupling, Heck coupling, Sonogashira coupling, O-arylation of phenol, transfer hydrogenation of aldehydes and ketones, aldehyde-alkyne-amine (A3) coupling, hydration of nitriles, conversion of aldehydes to amides, cross-dehydrogenative coupling (CDC), photodegradation of substrates (formic acid, methylene blue), reduction of nitrophenols, electrolysis (hydrogen evolution reaction and oxygen reduction reactions), organocatalysis and dye sensitized solar cells] and relevant aspects of catalytic processes (such as recyclability, substrate scope and green aspects) have been critically analyzed. Future perspectives have also been discussed.
Collapse
Affiliation(s)
- Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, Uttarakhand 248012, India.
| | - Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, Uttarakhand 248012, India.
| | - Gyandshwar Kumar Rao
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana (AUH), Gurgaon, Haryana 122413, India
| | - Sushil Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, Uttarakhand 248012, India.
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, Uttarakhand 248012, India.
| |
Collapse
|
16
|
Li D, Tian Q, Wang X, Wang Q, Wang Y, Liao S, Xu P, Huang X, Yuan J. N-Heterocyclic carbene palladium (II)-pyridine (NHC-Pd (II)-Py) complex catalyzed heck reactions. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1919711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dan Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Qingqiang Tian
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Xuetong Wang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Qiang Wang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Yin Wang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Siwei Liao
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Ping Xu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Xin Huang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Jianyong Yuan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
17
|
Tomar V, Upadhyay Y, Srivastava AK, Nemiwal M, Joshi RK, Mathur P. Selenated NHC-Pd(II) catalyzed Suzuki-Miyaura coupling of ferrocene substituted β-chloro-cinnamaldehydes, acrylonitriles and malononitriles for the synthesis of novel ferrocene derivatives and their solvatochromic studies. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Pd-NHCs Enabled Suzuki-Miyaura Cross-Coupling of Arylhydrazines via C–N Bond Cleavage. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Iqbal N, Yaqoob M, Javed M, Abbasi M, Iqbal J, Iqbal MA. Synthesis in combination with Biological and Computational evaluations of selenium-N-Heterocyclic Carbene compounds. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2020.113135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Khandaka H, Sharma KN, Joshi RK. Aerobic Cu and amine free Sonogashira and Stille couplings of aryl bromides/chlorides with a magnetically recoverable Fe3O4@SiO2 immobilized Pd(II)-thioether containing NHC. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Oswal P, Arora A, Gairola S, Datta A, Kumar A. Organosulfur, organoselenium, and organotellurium ligands in the development of palladium, nickel, and copper-based catalytic systems for Heck coupling. NEW J CHEM 2021. [DOI: 10.1039/d1nj02971a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organosulfur, organoselenium, and organotellurium ligands in designing Pd, Ni, and Cu-based homogeneous, heterogeneous, and nanocatalytic systems for Heck coupling.
Collapse
Affiliation(s)
- Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248012, India
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248012, India
| | - Sakshi Gairola
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248012, India
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi 110054, India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248012, India
| |
Collapse
|
22
|
Gitnes RM, Wang M, Bao Y, Scheuermann ML. In Situ Generation of Catalytically Relevant Nanoparticles from a Molecular Pincer Iridium Precatalyst during Polyol Deoxygenation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rachael M. Gitnes
- Department of Chemistry, Western Washington University, 516 High Street—MS-9150, Bellingham, Washington 98225, United States
| | - Maggie Wang
- Department of Chemistry, Western Washington University, 516 High Street—MS-9150, Bellingham, Washington 98225, United States
| | - Ying Bao
- Department of Chemistry, Western Washington University, 516 High Street—MS-9150, Bellingham, Washington 98225, United States
| | - Margaret L. Scheuermann
- Department of Chemistry, Western Washington University, 516 High Street—MS-9150, Bellingham, Washington 98225, United States
| |
Collapse
|
23
|
Structural Effect of Pincer Pd(II)–ONO Complexes Modified with Acylthiourea on Sizes of the In Situ Generated Pd Nanoparticles During Heck Coupling Reaction. Catal Letters 2020. [DOI: 10.1007/s10562-020-03413-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Sharma C, Srivastava AK, Soni A, Kumari S, Joshi RK. CO-free, aqueous mediated, instant and selective reduction of nitrobenzene via robustly stable chalcogen stabilised iron carbonyl clusters (Fe 3E 2(CO) 9, E = S, Se, Te). RSC Adv 2020; 10:32516-32521. [PMID: 35516488 PMCID: PMC9056603 DOI: 10.1039/d0ra04491a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/08/2020] [Indexed: 11/21/2022] Open
Abstract
Highly stable and thermally robust iron chalcogenide carbonyl clusters Fe3E2(CO)9 (E = S, Se or Te) have been explored for the reduction of nitrobenzene. A 15 min thermal heating of an aqueous solution of nitrobenzene and hydrazine hydrate in the catalytic presence of Fe3E2(CO)9 (E = S, Se or Te) clusters yield average to excellent aniline transformations. Among the S, Se and Te based iron chalcogenised carbonyl clusters, the diselenide cluster was found to be most efficient and produce almost 90% yield of the desired amino product, the disulfide cluster was also found to be significantly active, produce the 85% yield of amino product, while the ditelluride cluster was not found to be active and produced only 49% yield of the desired product. The catalyst can be reused up to three catalytic cycles and it needs to be dried in an oven for one hour prior to reuse for the best results. The developed method is inexpensive, environmentally benign, does not require any precious metal or a high pressure of toxic CO gas and exclusively brings the selective reduction of the nitro group under feasible and inert free conditions. In this study, a strongly feasible method for the reduction of nitrobenzene has been developed through highly stable and thermally robust iron chalcogenide carbonyl clusters Fe3E2(CO)9 (E = S, Se or Te).![]()
Collapse
Affiliation(s)
- Charu Sharma
- Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017 Rajasthan India
| | - Avinash Kumar Srivastava
- Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017 Rajasthan India
| | - Aditi Soni
- Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017 Rajasthan India
| | - Sangeeta Kumari
- Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017 Rajasthan India
| | - Raj Kumar Joshi
- Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017 Rajasthan India
| |
Collapse
|
25
|
Abstract
Our planet urgently needs sustainable solutions to alleviate the anthropogenic global warming and climate change. Homogeneous catalysis has the potential to play a fundamental role in this process, providing novel, efficient, and at the same time eco-friendly routes for both chemicals and energy production. In particular, pincer-type ligation shows promising properties in terms of long-term stability and selectivity, as well as allowing for mild reaction conditions and low catalyst loading. Indeed, pincer complexes have been applied to a plethora of sustainable chemical processes, such as hydrogen release, CO2 capture and conversion, N2 fixation, and biomass valorization for the synthesis of high-value chemicals and fuels. In this work, we show the main advances of the last five years in the use of pincer transition metal complexes in key catalytic processes aiming for a more sustainable chemical and energy production.
Collapse
|
26
|
Sharma C, Srivastava AK, Sharma KN, Joshi RK. Half-sandwich (η 5-Cp*)Rh(iii) complexes of pyrazolated organo-sulfur/selenium/tellurium ligands: efficient catalysts for base/solvent free C-N coupling of chloroarenes under aerobic conditions. Org Biomol Chem 2020; 18:3599-3606. [PMID: 32347877 DOI: 10.1039/d0ob00538j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new pyrazolated chalcogenoether ligated Rh(iii) half-sandwich complexes (1-3) were synthesised by the thermal reaction of chalcogenoether (S, Se and Te) substituted 1H-pyrazole ligands (L1-L3) and [(η5-C5Me5)RhCl]2 in methanol. The complexes were fully characterised by various spectroscopic techniques, and the molecular structures of complexes 1 and2 were also established through single crystal X-ray crystallographic analysis, which indicates a pseudo-octahedral half-sandwich piano-stool geometry around the rhodium metal. All three complexes were found to be thermally stable and insensitive towards air and moisture. One mol% of Rh(iii) complexes (1-3) along with 10 mol% of Cu(OAc)2 were explored for the Buchwald-Hartwig type C-N coupling reactions of amine and aryl chloride. Good to excellent yields (89-92%) of the coupling products were obtained with seleno- and thio-ether functionalised pyrazolated Rh(iii) complexes (1 and 2), while an average yield (39%) was obtained with the telluro-ether functionalised complex (3). In contrast to the previously reported C-N coupling reactions the present reaction works under solvent- and base-free conditions, and the coupling reaction is accomplished in just 6 h with a high yield of the coupling product. The present methodology was also found to be efficient for a wide variety of functionalised aryl halides, and aliphatic or aromatic amines (1° and 2°). Moreover, the reaction also enables the C-N coupling of electron-withdrawing substrates and base-sensitive functionalities.
Collapse
Affiliation(s)
- Charu Sharma
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur - 302017, Rajasthan, India.
| | | | | | | |
Collapse
|
27
|
Bhatt R, Bhuvanesh N, Sharma KN, Joshi H. Palladium Complexes of Thio/Seleno-Ether Containing N
-Heterocyclic Carbenes: Efficient and Reusable Catalyst for Regioselective C-H Bond Arylation. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ramprasad Bhatt
- Department of Chemistry; Birla Institute of Technology and Science; Pilani Campus 333031 Pilani India
| | - Nattamai Bhuvanesh
- Department of Chemistry; Texas A&M University; PO Box 30012 College Station 77842-3012 Texas USA
| | - Kamal Nayan Sharma
- Department of Chemistry; Malaviya National Institute of Technology Jaipur; J.L.N. Marg 302017 Jaipur Rajasthan India
- Department of Chemistry; ASAS, Amity University Haryana (AUH); Manesar; 122413 Gurgaon India
| | - Hemant Joshi
- Department of Chemistry; School of Chemical Sciences and Pharmacy; Central University of Rajasthan; NH-8, Bandarsindri 305817 Ajmer Rajasthan India
| |
Collapse
|
28
|
Oswal P, Arora A, Singh S, Nautiyal D, Kumar S, Rao GK, Kumar A. Organochalcogen ligands in catalysis of oxidation of alcohols and transfer hydrogenation. Dalton Trans 2020; 49:12503-12529. [PMID: 32804180 DOI: 10.1039/d0dt01201g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organochalcogen compounds have been used as the building blocks for the development of a variety of catalysts that have been studied comprehensively during the last two decades for several chemical transformations. Transfer hydrogenation (reduction of carbonyl compounds to alcohols) and oxidation of alcohols (conversion of alcohols to their respective ketones and aldehydes) are also among such chemical transformations. Some compilations are available in the literature on the development of catalysts, based on organochalcogen ligands, and their applications in Heck reaction, Suzuki reaction, and other related aspects. Some review articles have also been published on different aspects of oxidation of alcohols and transfer hydrogenation. However, no such article is available in the literature on the syntheses and use of organochalcogen ligated catalysts for these two reactions. In this perspective, a survey of developments pertaining to the synthetic aspects of such organochalcogen (S/Se/Te) based catalysts for the two reactions has been made. In addition to covering the syntheses of chalcogen ligands, their metal complexes and nanoparticles (NPs), emphasis has also been placed on the efficient conversion of different substrates during catalytic reactions, diversity in catalytic potential and mechanistic aspects of catalysis. It also includes the analysis of comparison (in terms of efficiency) between this unique class of catalysts and efficient catalysts without a chalcogen donor. The future scope of this area has also been highlighted.
Collapse
Affiliation(s)
- Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Siddhant Singh
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Divyanshu Nautiyal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Sushil Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Gyandshwar Kumar Rao
- Department of Chemistry Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| |
Collapse
|