1
|
Mohlala RL, Rashamuse TJ, Coyanis EM. Highlighting multicomponent reactions as an efficient and facile alternative route in the chemical synthesis of organic-based molecules: a tremendous growth in the past 5 years. Front Chem 2024; 12:1469677. [PMID: 39359421 PMCID: PMC11445040 DOI: 10.3389/fchem.2024.1469677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Since Strecker's discovery of multicomponent reactions (MCRs) in 1850, the strategy of applying an MCR approach has been in use for over a century. Due to their ability to quickly develop molecular diversity and structural complexity of interest, MCRs are considered an efficient approach in organic synthesis. Although MCRs such as the Ugi, Passerini, Biginelli, and Hantzsch reactions are widely studied, this review emphasizes the significance of selective MCRs to elegantly produce organic compounds of potential use in medicinal chemistry and industrial and material science applications, as well as the use of the MCR approach to sustainable methods. During synthesis, MCRs provide advantages such as atom economy, recyclable catalysts, moderate conditions, preventing waste, and avoiding solvent use. MCRs also reduce the number of sequential multiple reactions to one step.
Collapse
|
2
|
Farghaly TA, Al-Hussain SA, Zaki MEA, Al-Qurashi NT, Alharbi SS, Muhammad ZA. A Review Article on Synthesis of Different Types of Bioactive Spiropyrazole Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2105911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Thoraya A. Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nadia T. Al-Qurashi
- Department of Basic Science, University College in Adam, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salwa S. Alharbi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zeinab A. Muhammad
- Department of Organic Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
3
|
A. Farghaly T, A. Al-Hussain S, E. A. Zaki M, H. Asghar B, A. Muhammad Z. Synthesis of spiropyrazoles under organic and nonorganic catalysis. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220517220157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Spiropyrazoles display many biological biological activities such as antitumor, vasodilation, analgesic, phosphodiesterase inhibitors, aldosterone antagonistic, anabolic, androgenic, anti-inflammatory, progestational and salt-retaining activities and they also exert neuroprotection in dopaminergic cell death. Many efforts have been made to obtain these derivatives with high yield and excellent regio-, diastereo- and enantioselectivities. Most of the spiroprazole synthesis methods were proceeded in good to excellent yield in the presence of organic catalysts as for examples squaramide, NHC pre-catalyst, pyrrole derivatives, bis-oxazoline, DMAP, DABCO, thiourea derivatives, DBU, acetic acid and quinoline catalysts. In addition, the inorganic and organo-metallic catalysts have been proven their efficiency in synthesis of various types of spiro-pyrazoles in excellent yield. Thus, in this review we have compiled all citations for the synthesis of spiropyrazoles in the presence of various types of catalysts such as organic, inorganic, and metalorganic catalysts in the range 2020 to 2012. This review article is a useful compilation for researchers interested in the synthesis of spiropyrazole derivatives and will assist them in selecting appropriate catalysts for preparation of their spiropyrazoles.
Collapse
Affiliation(s)
- Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Basim H. Asghar
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zeinab A. Muhammad
- Department of Organic Chemistry, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| |
Collapse
|
4
|
Carceller-Ferrer L, González del Campo A, Vila C, Blay G, Muñoz MC, Pedro JR. Catalytic Diastereo- and Enantioselective Synthesis of Tertiary Trifluoromethyl Carbinols through a Vinylogous Aldol Reaction of Alkylidenepyrazolones with Trifluoromethyl Ketones. J Org Chem 2022; 87:4538-4549. [PMID: 35293756 PMCID: PMC8981347 DOI: 10.1021/acs.joc.1c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 11/29/2022]
Abstract
A diastereo- and enantioselective organocatalytic aldol reaction between alkylidenepyrazolones and trifluoromethyl ketones leading to chiral tertiary alcohols bearing a trifluoromethyl group is presented. The methodology is based on the use of a bifunctional organocatalyst in order to activate the γ-hydrogen atoms of the alkylidenepyrazolone nucleophile and the carbonyl group of the trifluoromethylarylketone providing highly functionalized trifluoromethyl alcohols with moderate yields, excellent diastereoselectivity, and moderate to good enantioselectivity. Experiments monitoring the conversion by 1H NMR and the enantiomeric excess by HPLC with the reaction time showed that full conversion of the starting materials is not achieved and that the enantiomeric excess decreases upon extended times, probably due to the reversibility of the reaction.
Collapse
Affiliation(s)
- Laura Carceller-Ferrer
- Departament
de Química Orgànica, Facultat
de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Aleix González del Campo
- Departament
de Química Orgànica, Facultat
de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Carlos Vila
- Departament
de Química Orgànica, Facultat
de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Gonzalo Blay
- Departament
de Química Orgànica, Facultat
de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - M. Carmen Muñoz
- Departament
de Física Aplicada, Universitat Politècnica
de València, Camino de Vera s/n, 46022 València, Spain
| | - José R. Pedro
- Departament
de Química Orgànica, Facultat
de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| |
Collapse
|
5
|
Bao X, Wang X, Tian JM, Ye X, Wang B, Wang H. Recent advances in the applications of pyrazolone derivatives in enantioselective synthesis. Org Biomol Chem 2022; 20:2370-2386. [PMID: 35234777 DOI: 10.1039/d1ob02426d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pyrazolones and pyrazoles, featuring nitrogen-nitrogen bonds, are two of the most important classes of heterocycles, owing to their widespread occurrence in medicinal chemistry and functional materials. The last decade has witnessed a rapid increase in the construction of chiral pyrazolone and pyrazole derivatives, with the application of pyrazolone derivatives as powerful synthons. Since our last review in 2018, a large number of new achievements has emerged in this area, requiring a timely update. Thus, this review summarizes these elegant achievements based on the multiple reactive sites of different pyrazolone synthons. In addition, important mechanisms and interesting biological investigations relating to the corresponding products are also discussed.
Collapse
Affiliation(s)
- Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xingyue Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jin-Miao Tian
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 112024, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
6
|
Matsushima Y, Iino Y, Tsuruta Y, Nakashima K, Hirashima SI, Miura T. Asymmetric conjugate addition–cyclization of cyclohexane-1,2-dione with alkylidenemalononitriles using diaminomethylenemalononitrile organocatalyst. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Li ZF, He HJ, Wang RH, Zhou LY, Xiao YC, Chen FE. Copper-catalyzed asymmetric alkynylation of pyrazole-4,5-diones using chloramphenicol base-derived hydroxyl oxazoline ligands. Org Chem Front 2022. [DOI: 10.1039/d2qo00213b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The asymmetric copper-catalyzed alkynylation reactions of pyrazole 4,5-diones in the presence of hydroxyl oxazoline ligand, which was derived from low cost, easily accessible chloramphenicol base (ANP), were achieved. The notable...
Collapse
|
8
|
Carceller-Ferrer L, Vila C, Blay G, Muñoz MC, Pedro JR. Catalytic Diastereo- and Enantioselective Vinylogous Mannich Reaction of Alkylidenepyrazolones to Isatin-Derived Ketimines. Org Lett 2021; 23:7391-7395. [PMID: 34553948 PMCID: PMC8491163 DOI: 10.1021/acs.orglett.1c02571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
![]()
A valuable organocatalytic
vinylogous Mannich reaction between
alkylidenepyrazolones and isatin-derived ketimines has been successfully
established. Squaramide organocatalyst, prepared from quinine, catalyzed
the diastereo- and enantioselective vinylogous Mannich addition, affording
a range of aminooxindole-pyrazolone adducts (24 examples) with excellent
outcomes: up to 98% yield with complete diastereoselectivity and excellent
enantioselectivity (up to 99% ee). Additionally, different synthetic
transformations were performed with the chiral pyrazolone-oxindole
adducts.
Collapse
Affiliation(s)
- Laura Carceller-Ferrer
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Carlos Vila
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Gonzalo Blay
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - M Carmen Muñoz
- Departament de Física Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - José R Pedro
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| |
Collapse
|
9
|
Thadem N, Rajesh M, Das S. Activator free diastereoselective 1,3-dipolar cycloaddition: a quick access to coumarin based spiro multi heterocyclic adducts. RSC Adv 2021; 11:29934-29938. [PMID: 35480285 PMCID: PMC9040763 DOI: 10.1039/d1ra05070b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 01/26/2023] Open
Abstract
A formal diastereoselective 1,3-dipolar cycloaddition of azomethine ylide and coumarin derivatives to construct coumarin based spiro multi heterocyclics has been described. The in situ generation of azo-ylide was achieved for various heterocyclic carbonyls (indenoquinoxaline and isatin). This transformation is also suitable for maleimide dipolarophiles for the synthesis of hydro-maleimide derivatives. These decarboxylative annulations neither required any catalyst nor any activator. Further the pure products were isolated by filtration from the reaction mixture after the reaction under ambient conditions.
Collapse
Affiliation(s)
- Nagender Thadem
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India +91 40 2719 1887
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Manda Rajesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India +91 40 2719 1887
| | - Saibal Das
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India +91 40 2719 1887
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
10
|
Zhong YJ, Qi T, Ji YL, Huang H, Zhang X, Leng HJ, Peng C, Li JL, Han B. Highly Chemoselective [2+1] Annulation of α-Alkylidene Pyrazolones with α-Bromonitroalkenes: Synthesis of Pyrazolone-Based Vinylcyclopropanes and Computational Studies. J Org Chem 2021; 86:2582-2592. [PMID: 33423501 DOI: 10.1021/acs.joc.0c02674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A highly chemoselective [2+1] annulation of α-alkylidene pyrazolones with α-bromonitroalkenes has been achieved under mild conditions. α-Alkylidene pyrazolones were unprecedentedly used as a C1 synthon to participate in annulation reactions, providing access to diverse vinylcyclopropane-based pyrazolone products. In addition, a spectrum of pharmaceutically interesting pyrazole-fused pyranone oximes could be rapidly obtained through a [2+1] annulation/rearrangement sequential process. Computational studies disclosed the origin of the observed chemoselectivity of the [2+1] cycloaddition.
Collapse
Affiliation(s)
- Ya-Jun Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, People's Republic of China
| | - Yan-Ling Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Hua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, People's Republic of China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, People's Republic of China
| | - Hai-Jun Leng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, People's Republic of China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, People's Republic of China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| |
Collapse
|
11
|
Pedro JR, Vila C, Carceller-Ferrer L, Blay G. Recent Advances in Catalytic Enantioselective Synthesis of Pyrazolones with a Tetrasubstituted Stereogenic Center at the 4-Position. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractPyrazolone [2,4-dihydro-3H-pyrazol-4-one] represents one of the most important five-membered nitrogen heterocycles which is present in numerous pharmaceutical drugs and molecules with biological activity. Recently, many catalytic methodologies for the asymmetric synthesis of chiral pyrazolones have been established with great success, specially, for the synthesis of pyrazolones bearing a tetrasubstituted stereocenter at C-4. This review summarizes these excellent research studies since 2018, including representative examples and some mechanistic pathways explaining the observed stereochemistry.1 Introduction2 Catalytic Enantioselective Synthesis of Chiral Pyrazolones with a Full Carbon Tetrasubstituted Stereocenter at C-43 Catalytic Enantioselective Synthesis of Chiral Pyrazolones with a Quaternary Carbon Stereocenter at C-4 bearing a Heteroatom4 Catalytic Enantioselective Synthesis of Chiral Spiropyrazolones5 Conclusion
Collapse
|
12
|
Krishna AV, Reddy GS, Gorachand B, Ramachary DB. Organocatalytic Asymmetric Formal [3+3]‐Cycloaddition to Access 2,3‐Diazaspiro[4.5]deca‐3,6‐dien‐1‐ones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- A. Vamshi Krishna
- Catalysis Laboratory School of Chemistry University of Hyderabad 500 046 Hyderabad India
| | - G. Surendra Reddy
- Catalysis Laboratory School of Chemistry University of Hyderabad 500 046 Hyderabad India
| | - B. Gorachand
- Catalysis Laboratory School of Chemistry University of Hyderabad 500 046 Hyderabad India
| | | |
Collapse
|
13
|
Nunes PSG, Vidal HDA, Corrêa AG. Recent advances in catalytic enantioselective multicomponent reactions. Org Biomol Chem 2020; 18:7751-7773. [PMID: 32966520 DOI: 10.1039/d0ob01631d] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multicomponent reactions (MCRs) undoubtedly correspond to one of the synthetic strategies that best fit the new demands of chemistry for presenting high atom economy and enabling molecular diversity. However, many challenges still exist when products possessing stereogenic centres are formed. The field of asymmetric catalytic reactions has achieved significant progress in recent decades; new applications for chiral ligands and catalysts have been demonstrated and new catalysts have been specifically designed for challenging chemical conversions. In this sense, highly efficient approaches for classic multicomponent reactions such as the Ugi reaction and a number of new asymmetric MCRs have been described. In this review we discuss the recent developments that enable catalytic enantioselective MCRs including the proposed mechanistic pathways.
Collapse
Affiliation(s)
- Paulo Sérgio Gonçalves Nunes
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil.
| | | | | |
Collapse
|