1
|
Liu Y, Li R, Lv Q, Yu B. Embracing heterogeneous photocatalysis: evolution of photocatalysts in annulation of dimethylanilines and maleimides. Chem Commun (Camb) 2024. [PMID: 39078307 DOI: 10.1039/d4cc02516d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Recent advances in visible-light-promoted construction of tetrahydroquinolines from dimethylanilines and maleimides are documented. Homogeneous and heterogeneous photocatalytic systems, as well as the reaction mechanism, are emphasized. The mechanism of this photocatalytic annulation reaction is quite clear, i.e., dimethylanilines and maleimides serve as the radical precursors and radical acceptors, respectively. This annulation reaction could serve as an excellent platform for evaluating novel oxidative heterogeneous photocatalytic systems, which could further inspire chemists in this field to develop more efficient photocatalytic systems. Significant opportunities are expected in the future for heterogeneous photocatalysis strategies.
Collapse
Affiliation(s)
- Yan Liu
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou, Henan Province 451191, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore.
| | - Qiyan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Deng H, Liang X, Liu J, Zheng X, Fan TP, Cai Y. Advances and perspectives on perylenequinone biosynthesis. Front Microbiol 2022; 13:1070110. [PMID: 36605511 PMCID: PMC9808054 DOI: 10.3389/fmicb.2022.1070110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Under illumination, the fungal secondary metabolites, perylenequinones (PQs) react with molecular oxygen to generate reactive oxygen species (ROS), which, in excess can damage cellular macromolecules and trigger apoptosis. Based on this property, PQs have been widely used as photosensitizers and applied in pharmaceuticals, which has stimulated research into the discovery of new PQs and the elucidation of their biosynthetic pathways. The PQs-associated literature covering from April 1967 to September 2022 is reviewed in three sections: (1) the sources, structural diversity, and biological activities of microbial PQs; (2) elucidation of PQ biosynthetic pathways, associated genes, and mechanisms of regulation; and (3) advances in pathway engineering and future potential strategies to modify cellular metabolism and improve PQ production.
Collapse
Affiliation(s)
- Huaxiang Deng
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China,*Correspondence: Huaxiang Deng,
| | - Xinxin Liang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinbin Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi’an, Shanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China,Yujie Cai,
| |
Collapse
|
3
|
Barata‐Vallejo S, Yerien DE, Postigo A. Bioinspired Photocatalyzed Organic Synthetic Transformations. The Use of Natural Pigments and Vitamins in Photocatalysis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sebastián Barata‐Vallejo
- Departamento de Ciencias Químicas Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Junin 954 CP 1113- Buenos Aires Argentina
- Istituto per la Sintesis Organica e la Fotorreattivita, ISOF Consiglio Nazionale delle Ricerche Via P. Gobetti 101 40129 Bologna Italy
| | - Damian E. Yerien
- Departamento de Ciencias Químicas Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Junin 954 CP 1113- Buenos Aires Argentina
| | - Al Postigo
- Departamento de Ciencias Químicas Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Junin 954 CP 1113- Buenos Aires Argentina
| |
Collapse
|
4
|
Thakur A, - M, Kumar I, Sharma U. Visible Light Induced Functionalization of C‐H Bonds: Opening of New Avenues in Organic Synthesis. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ankita Thakur
- CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR Chemical Technology Division INDIA
| | - Manisha -
- CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR Chemical Technology Division INDIA
| | - Inder Kumar
- CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR Chemical Technology Division INDIA
| | - Upendra Sharma
- CSIR-Institute of Himalayan Bioresource Technology Natural Product Chemistry and Process Development Division Palampur, IndiaPalampur 176061 Palampur INDIA
| |
Collapse
|
5
|
Runemark A, Sundén H. Aerobic Oxidative EDA Catalysis: Synthesis of Tetrahydroquinolines Using an Organocatalytic EDA Active Acceptor. J Org Chem 2022; 87:1457-1469. [PMID: 35005960 PMCID: PMC8790759 DOI: 10.1021/acs.joc.1c02776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 12/17/2022]
Abstract
A catalytic electron donor-acceptor (EDA) complex for the visible-light-driven annulation reaction between activated alkenes and N,N-substituted dialkyl anilines is reported. The key photoactive complex is formed in situ between dialkylated anilines as donors and 1,2-dibenzoylethylene as a catalytic acceptor. The catalytic acceptor is regenerated by aerobic oxidation. Investigations into the mechanism are provided, revealing a rare example of a catalytic acceptor in photoactive EDA complexes that can give access to selective functionalization of aromatic amines under mild photochemical conditions.
Collapse
Affiliation(s)
- August Runemark
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Henrik Sundén
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
- Chemistry
and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg, Sweden
| |
Collapse
|
6
|
Porphyrin covalent organic framework for photocatalytic synthesis of tetrahydroquinolines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Shi J, Wang Y, Bu Q, Liu B, Dai B, Liu N. Cr-Catalyzed Direct ortho-Aminomethylation of Phenols. J Org Chem 2021; 86:17567-17580. [PMID: 34874723 DOI: 10.1021/acs.joc.1c01406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We developed a Cr-catalyzed strategy for the regioselective formation of Csp2-Csp3 bonds through the direct and efficient ortho-aminomethylation of N,N-dimethylanilines with phenols. The approach showed excellent site selectivity at the ortho-position of phenols and accommodated broad substrate scope and functional group compatibility for both N,N-dimethylanilines and phenols. Mechanistic studies revealed that the direct ortho-aminomethylation between N,N-dimethylanilines and phenols occurred via an ionic mechanism.
Collapse
Affiliation(s)
- Junbin Shi
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Yubin Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Qingqing Bu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Binyuan Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China.,Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Ning Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| |
Collapse
|
8
|
Wu W, Wang H, Chen J, Bao X, Tan C, Ye X. Dicyanopyrazine‐derived Chromophore as An Efficient Photocatalyst for α‐amino C‐H Bond Functionalization. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wentao Wu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Jun Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Choon‐Hong Tan
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| |
Collapse
|
9
|
Ding Y, Kuang J, Xiao X, Wang L, Ma Y. Environmentally Benign Synthesis of Quinoline-Spiroquinazolinones by Iron-Catalyzed Dehydrogenative [4 + 2] Cycloaddition of Secondary/Tertiary Anilines and 4-Methylene-quinazolinones. J Org Chem 2021; 86:12257-12266. [PMID: 34387487 DOI: 10.1021/acs.joc.1c01602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report an efficient iron-catalyzed cross-dehydrogenative coupling [4 + 2] annulation of secondary/tertiary anilines with quinazolinones to generate quinoline-spiroquinzolinones. The reaction proceeds smoothly with a relatively broad variety of functional groups, a cheap transition metal catalyst (FeCl3), and environmentally friendly oxidant (H2O2/O2) under mild reaction conditions. Creatively, N-methylanilines are employed for the first time for the cycloaddition as both methyl and methylene sources attached to the N atom of tetrahydroquinolines.
Collapse
Affiliation(s)
- Yuxin Ding
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| | - Jinqiang Kuang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China
| | - Xuqiong Xiao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318 Yuhangtang Road, Hangzhou 311121, P R China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| |
Collapse
|
10
|
Discovery and characterization of a novel perylenephotoreductant for the activation of aryl halides. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Itoh K, Nagao SI, Tokunaga K, Hirayama S, Karaki F, Mizuguchi T, Nagai K, Sato N, Suzuki M, Hashimoto M, Fujii H. Visible-Light-Induced Synthesis of 1,2,3,4-Tetrahydroquinolines through Formal [4+2] Cycloaddition of Acyclic α,β-Unsaturated Amides and Imides with N,N-Dialkylanilines. Chemistry 2021; 27:5171-5179. [PMID: 33300620 DOI: 10.1002/chem.202004186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Indexed: 01/01/2023]
Abstract
1,2,3,4-Tetrahydroquinolines should be applicable to the development of new pharmaceutical agents. A facile synthesis of 1,2,3,4-tetrahydroquinolines that is achieved by a photoinduced formal [4+2] cycloaddition reaction of acyclic α,β-unsaturated amides and imides with N,N-dialkylanilines under visible-light irradiation, in which a new IrIII complex photosensitizer, a thiourea, and an oxidant act cooperatively in promoting the reaction, is reported. The photoreaction enables the synthesis of a wide variety of 1,2,3,4-tetrahydroquinolines, while controlling the trans/cis diastereoselectivity (>99:1) and constructing contiguous stereogenic centers. A chemoselective cleavage of an acyclic imide auxiliary is demonstrated.
Collapse
Affiliation(s)
- Kennosuke Itoh
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Shun-Ichi Nagao
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Ken Tokunaga
- Division of Liberal Arts, Center for Promotion of Higher Education, Kogakuin University, Tokyo, 192-0015, Japan
| | - Shigeto Hirayama
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Fumika Karaki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Takaaki Mizuguchi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Kenichiro Nagai
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Noriko Sato
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Mitsuaki Suzuki
- Department of Chemistry, Faculty of Science, Josai University, Saitama, 350-0295, Japan
| | - Masashi Hashimoto
- Department of Chemistry, Faculty of Science, Josai University, Saitama, 350-0295, Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| |
Collapse
|
12
|
Runemark A, Zacharias SC, Sundén H. Visible-Light-Driven Stereoselective Annulation of Alkyl Anilines and Dibenzoylethylenes via Electron Donor-Acceptor Complexes. J Org Chem 2021; 86:1901-1910. [PMID: 33397115 PMCID: PMC7884011 DOI: 10.1021/acs.joc.0c02819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
A catalyst-free, stereoselective
visible-light-driven annulation
reaction between alkenes and N,N-substituted dialkyl anilines for the synthesis of substituted tetrahydroquinolines
is presented. The reaction is driven by the photoexcitation of an
electron donor–acceptor (EDA) complex, and the resulting products
are obtained in good to high yields with complete diastereoselectivity.
Mechanistic rationale and photochemical characterization of the EDA-complex
are provided.
Collapse
Affiliation(s)
- August Runemark
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Savannah C Zacharias
- Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Henrik Sundén
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden.,Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| |
Collapse
|
13
|
Zhang Y, Lou J, Li M, Yuan Z, Rao Y. Emodin as a novel organic photocatalyst for selective oxidation of sulfides under mild conditions. RSC Adv 2020; 10:19747-19750. [PMID: 35520433 PMCID: PMC9054162 DOI: 10.1039/d0ra02702b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Herein, we have developed naturally-occurring Emodin, which is commercially available at low-cost, as a novel organic photocatalyst for the first time. Emodin was successfully employed in the selective oxidation of sulfides promoted by visible-light, delivering valuable sulfoxides with high efficiency. Mechanistic investigations suggested both single-electron transfer (SET) and energy transfer (EnT) pathways might be involved in the oxidation reaction.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 P. R. China
- School of Pharmaceutical Science, Jiangnan University Wuxi 214122 P. R. China
| | - Jiangli Lou
- School of Pharmaceutical Science, Jiangnan University Wuxi 214122 P. R. China
| | - Min Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 P. R. China
| |
Collapse
|
14
|
Li J, Bao W, Zhang Y, Rao Y. Metal-Free Cercosporin-Photocatalyzed C-S Coupling for the Selective Synthesis of Aryl Sulfides under Mild Conditions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jia Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; Jiangnan University; 214122 Wuxi P. R. China
| | - Wenhao Bao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; Jiangnan University; 214122 Wuxi P. R. China
| | - Yan Zhang
- School of Pharmaceutical Science; Jiangnan University; 214122 Wuxi P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; Jiangnan University; 214122 Wuxi P. R. China
| |
Collapse
|