1
|
Li SL, Yang T, Yin YX, Karmaker PG, Chu WD, Zhou Q, Liu QZ. Enantioselective Cycloaddition of in Situ Formed aza-Dienes and Vinyl Diazo Compounds for the Synthesis of Optically Enriched and Diazo Containing Tetrahydropyridazine. J Org Chem 2024; 89:18752-18758. [PMID: 39658815 DOI: 10.1021/acs.joc.4c02499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A copper catalyzed enantioselective formal aza-Diels-Alder reaction of in situ formed 1,2-diaza-1,3-dienes from α-halohydrazones and vinyl diazo compounds was described. The protocol provides a variety of optically enriched diazo-containing tetrahydropyridazines in moderate yields and with up to excellent enantioselectivities. The present methodologies utilize chiral oxazolines as the chiral ligands for asymmetric catalysis and feature mild reaction conditions, readily available substrates, and broad substrate scope.
Collapse
Affiliation(s)
- Song-Liang Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Ting Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yi-Xiao Yin
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Pran Gopal Karmaker
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Qing Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
2
|
Xie DX, Huang YM, Lin XM, Kang ZH, Ni CC, Fu YT, Ren Z, Liu YL. Solvent-Controlled Divergent Cyclization of 3-Ylideneoxindoles with Ethyl 2-Diazoacetate: Access to Spirocyclopropyl and Spiropyrazolines Oxindoles. Chemistry 2024; 30:e202402654. [PMID: 39243165 DOI: 10.1002/chem.202402654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/09/2024]
Abstract
Herein a catalyst-free solvent-controlled method for the divergent synthesis of spirocyclopropyl and spiropyrazoline oxindoles from 3-ylideneoxindoles and ethyl diazoacetate was developed. With ClCH2CH2Cl as the solvent, spirocyclopropyl oxindoles were obtained in moderate to excellent yields, whereas the use of MeOH as solvent afforded spiropyrazoline oxindoles in moderate to good yields. The readily available substrates, simple operation and various product transformations further highlighted the utility of this method.
Collapse
Affiliation(s)
- Ding-Xiong Xie
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, China
| | - Yue-Mei Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, China
| | - Xiao-Ming Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, China
| | - Zheng-Hui Kang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Chen-Chen Ni
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, China
| | - Yao-Tong Fu
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, China
| | - Zhi Ren
- College of Pharmacy, Shenzhen Technology University, 3002 Lantian Road, Shenzhen, 518118, China
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Rd., Shanghai, 200062, China
| |
Collapse
|
3
|
Duan DH, Wei YF, Li TY, Gong Q, Shen M, Zhu F, Liu SL, Ye DN, Peng XJ. Base-Mediated Chemodivergent [4 + 1] and [2 + 1] Cycloadditions of N-Alkylpyridiniums and Enones. J Org Chem 2024; 89:11959-11974. [PMID: 39190161 DOI: 10.1021/acs.joc.4c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Divergent synthesis of structurally different products from the same kinds of starting materials is highly synthetically useful but very challenging. Herein, we reported a base-mediated chemodivergent [4 + 1] and [2 + 1] cycloaddition of N-alkylpyridinium and enone under mild conditions, leading to furan-fused bicycles with high diastereoselectivity and spirobicycles, respectively, from moderate to high yields. N-Alkylpyridinium salts were modular nucleophilic transfer reagents and C1 synthons, which underwent tandem Michael addition to the α,β-unsaturated ketones and cyclization under the base conditions. Late-stage derivatization of 4-propyldicyclohexylanone from an important industrial raw of liquid crystal display (LCD) screens was realized. In vitro, compound 3f exhibited good activities against human colon cancer cells (HCT116) with IC50 values in 9.82 ± 0.27 μM. Further biological evaluations investigated the mechanism of the effective inhibition of cell growth, including apoptosis ratio detection, cell cycle analysis, and migration capacity of HCT116 cells. In apoptosis effect studies, complex 3f increased the percentage of apoptotic HCT116 cells to 26.8% (15 μM).
Collapse
Affiliation(s)
- De-Hao Duan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Yi-Fei Wei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Tian-You Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Quan Gong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Min Shen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Feng Zhu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Sheng-Lan Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Dong-Nai Ye
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Xiang-Jun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| |
Collapse
|
4
|
Du W, Liu X, Sun F, Lam JWY, Yang J, Tang BZ. Development of Controllable Hetero-Pauson-Khand Polymerization to Functional Stimuli-Responsive Poly(γ-lactam)s. Angew Chem Int Ed Engl 2024:e202413275. [PMID: 39219145 DOI: 10.1002/anie.202413275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Polymers containing lactam structures play a crucial role in both natural biological systems and human life, and their synthesis, functions and applications are of utmost importance for biomimetics and the creation of new materials. In this study, we developed an efficient heterogeneous Pauson-Khand polymerization (h-PKP) method for the controlled synthesis of main-chain poly(γ-lactam)s containing α, β-unsaturated γ-lactam functionalities using readily available internal alkynes and imines. The molecular weights of the resulting poly(N-Ts/γ-lactam)s can be precisely controlled by adjusting the ratio of phenyl formate and nickel. These polymers exhibit high solid-state luminescence and demonstrate rapid and sensitive dual responsiveness to light and acid stimuli. They further demonstrate strong reactive oxygen species (ROS) generation capability. The unique dual-emission peaks observed in poly(N-H/γ-lactam)s obtained through post-treatment under acidic conditions demonstrate a mechanism of aggregation-induced intermolecular excited-state proton transfer specific to lactam structures. The efficient one-pot synthetic method for poly(γ-lactam) provides a novel strategy for constructing polymers with γ-lactam structures in the main chain and the simple and efficient post-modification method offer a versatile toolbox for functionalizing poly(γ-lactam)s to expand their potential applications.
Collapse
Affiliation(s)
- Wutong Du
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 997077, P. R. China
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, P. R. China
| | - Xinyue Liu
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 997077, P. R. China
| | - Feiyi Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 997077, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 997077, P. R. China
| | - Jinglei Yang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 997077, P. R. China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute Futian, Shenzhen, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 997077, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P.R. China
| |
Collapse
|
5
|
Das S, Dutta A. Annulations involving 1-indanones to access fused- and spiro frameworks. RSC Adv 2022; 12:33365-33402. [PMID: 36425193 PMCID: PMC9679735 DOI: 10.1039/d2ra06635a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 11/15/2023] Open
Abstract
Indanones are prominent motifs found in number of natural products and pharmaceuticals. Particularly, 1-indanones occupy important niche in chemical landscape due to their easy accessibility and versatile reactivity. In the past few years, significant advancement has been achieved regarding cyclization of 1-indanone core. The present review focuses on recent (2016-2022) annulations involving 1-indanones for the construction of fused- and spirocyclic frameworks. In this context, new strategies for synthesis of various carbocyclic as well as heterocyclic skeletons are demonstrated. Mechanistic aspects of representative reactions are illustrated for better understanding of reaction pathways. A large number of transformations described in this review offer stereoselective formation of desired polycyclic compounds. Importantly, several reactions provide biologically relevant compounds and natural products, such as, plecarpenene/plecarpenone, swinhoeisterol A, cephanolides A-D, diptoindonesin G and atlanticone C.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women Naihati 24-Parganas (N) 743165 India
| | - Arpita Dutta
- Department of Chemistry, Rishi Bankim Chandra Evening College Naihati 24-Parganas (N) 743165 India
| |
Collapse
|
6
|
Farghaly TA, Al-Hussain SA, Zaki MEA, Al-Qurashi NT, Alharbi SS, Muhammad ZA. A Review Article on Synthesis of Different Types of Bioactive Spiropyrazole Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2105911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Thoraya A. Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nadia T. Al-Qurashi
- Department of Basic Science, University College in Adam, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salwa S. Alharbi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zeinab A. Muhammad
- Department of Organic Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
7
|
A. Farghaly T, A. Al-Hussain S, E. A. Zaki M, H. Asghar B, A. Muhammad Z. Synthesis of spiropyrazoles under organic and nonorganic catalysis. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220517220157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Spiropyrazoles display many biological biological activities such as antitumor, vasodilation, analgesic, phosphodiesterase inhibitors, aldosterone antagonistic, anabolic, androgenic, anti-inflammatory, progestational and salt-retaining activities and they also exert neuroprotection in dopaminergic cell death. Many efforts have been made to obtain these derivatives with high yield and excellent regio-, diastereo- and enantioselectivities. Most of the spiroprazole synthesis methods were proceeded in good to excellent yield in the presence of organic catalysts as for examples squaramide, NHC pre-catalyst, pyrrole derivatives, bis-oxazoline, DMAP, DABCO, thiourea derivatives, DBU, acetic acid and quinoline catalysts. In addition, the inorganic and organo-metallic catalysts have been proven their efficiency in synthesis of various types of spiro-pyrazoles in excellent yield. Thus, in this review we have compiled all citations for the synthesis of spiropyrazoles in the presence of various types of catalysts such as organic, inorganic, and metalorganic catalysts in the range 2020 to 2012. This review article is a useful compilation for researchers interested in the synthesis of spiropyrazole derivatives and will assist them in selecting appropriate catalysts for preparation of their spiropyrazoles.
Collapse
Affiliation(s)
- Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Basim H. Asghar
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zeinab A. Muhammad
- Department of Organic Chemistry, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| |
Collapse
|
8
|
Shen LW, Zhang YP, You Y, Zhao JQ, Wang ZH, Yuan WC. Inverse Electron-Demand Aza-Diels-Alder Reaction of α,β-Unsaturated Thioesters with In Situ-Generated 1,2-Diaza-1,3-dienes for the Synthesis of 1,3,4-Thiadiazines. J Org Chem 2022; 87:4232-4240. [PMID: 35212520 DOI: 10.1021/acs.joc.1c03072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A highly regioselective inverse electron-demand aza-Diels-Alder reaction of α,β-unsaturated thioesters with 1,2-diaza-1,3-dienes generated in situ from α-halogeno hydrazones was developed. With α,β-unsaturated thioesters as C═S dienophiles, the developed protocol enables the formation of diverse 3,6-dihydro-2H-1,3,4-thiadiazine derivatives in excellent yields. In the presence of lithium aluminum hydride, 3,6-dihydro-2H-1,3,4-thiadiazine derivatives could be further transformed into 5,6-dihydro-4H-1,3,4-thiadiazines in good yields.
Collapse
Affiliation(s)
- Li-Wen Shen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
9
|
Ushakov P, Ioffe S, Sukhorukov AY. Recent advances in the application of ylide-like species in [4+1]-annulation reactions: an update review. Org Chem Front 2022. [DOI: 10.1039/d2qo00698g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, advances in [4+1]‐annulation reactions involving sulfonium, sulfoxonium and ammonium ylides, as well as diazo compounds and carbenes are summarized over the last 6 years. Newly emerged methods...
Collapse
|
10
|
Lv Y, Meng J, Li C, Wang X, Ye Y, Sun K. Update on the Synthesis of N‐Heterocycles via Cyclization of Hydrazones (2017–2021). Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101184] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 4550008 People's Republic of China
| | - Jianping Meng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Chen Li
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| |
Collapse
|
11
|
Aza-Diels-Alder reaction of both electron-deficient azoalkenes with electron-deficient 3-phencaylideneoxindoles and 3-aryliminooxindol-2-ones. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
12
|
Liu L, Li Y, Huang T, Kong D, Wu M. A novel methodology for the efficient synthesis of 3-monohalooxindoles by acidolysis of 3-phosphate-substituted oxindoles with haloid acids. Beilstein J Org Chem 2021; 17:2321-2328. [PMID: 34621395 PMCID: PMC8450974 DOI: 10.3762/bjoc.17.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
A novel method for the synthesis of 3-monohalooxindoles by acidolysis of isatin-derived 3-phosphate-substituted oxindoles with haloid acids was developed. This synthetic strategy involved the preparation of 3-phosphate-substituted oxindole intermediates and SN1 reactions with haloid acids. This new procedure features mild reaction conditions, simple operation, good yield, readily available and inexpensive starting materials, and gram-scalability.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Tropical Medicinal Plant Chemistry of the Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan Province, P. R. China
| | - Yue Li
- Key Laboratory of Tropical Medicinal Plant Chemistry of the Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan Province, P. R. China
| | - Tiao Huang
- Key Laboratory of Tropical Medicinal Plant Chemistry of the Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan Province, P. R. China
| | - Dulin Kong
- School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P. R. China
| | - Mingshu Wu
- Key Laboratory of Tropical Medicinal Plant Chemistry of the Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan Province, P. R. China
| |
Collapse
|
13
|
Marek L, Váňa J, Svoboda J, Hanusek J. Synthesis of the Kinase Inhibitors Nintedanib, Hesperadin, and Their Analogues Using the Eschenmoser Coupling Reaction. J Org Chem 2021; 86:10621-10629. [PMID: 34269051 DOI: 10.1021/acs.joc.1c01269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel synthetic approach involving an Eschenmoser coupling reaction of substituted 3-bromooxindoles (H, 6-Cl, 6-COOMe, 5-NO2) with two substituted thiobenzanilides in dimethylformamide or acetonitrile was used for the synthesis of eight kinase inhibitors including Nintedanib and Hesperadin in yields exceeding 76%. Starting compounds for the synthesis are also easily available in good yields. 3-Bromooxindoles were prepared either from corresponding isatins using a three-step synthesis in an average overall yield of 65% or by direct bromination of oxindoles (yield of 65-86%). Starting N-(4-piperidin-1-ylmethyl-phenyl)-thiobenzamide was prepared by thionation of the corresponding benzanilide in an 86% yield and N-methyl-N-(4-thiobenzoylaminophenyl)-2-(4-methylpiperazin-1-yl)acetamide was prepared by thioacylation of the corresponding aniline with methyl dithiobenzoate in an 86% yield.
Collapse
Affiliation(s)
- Lukáš Marek
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, The Czech Republic
| | - Jiří Váňa
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, The Czech Republic
| | - Jan Svoboda
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, The Czech Republic
| | - Jiří Hanusek
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, The Czech Republic
| |
Collapse
|
14
|
Shen LW, Li TT, You Y, Zhao JQ, Wang ZH, Yuan WC. Inverse Electron-Demand Aza-Diels-Alder Reaction of Cyclic Enamides with 1,2-Diaza-1,3-dienes in Situ Generated from α-Halogeno Hydrazones: Access to Fused Polycyclic Tetrahydropyridazine Derivatives. J Org Chem 2021; 86:11472-11481. [PMID: 34343003 DOI: 10.1021/acs.joc.1c00993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient inverse electron-demand aza-Diels-Alder reaction of cyclic enamides and 1,2-diaza-1,3-dienes, which could be readily formed in situ from α-halogeno hydrazones and a base, has been successfully developed. With the developed approach, a wide range of fused polycyclic tetrahydropyridazines were smoothly obtained in up to 99% yield under benign reaction conditions. This reaction concept was also extended to acyclic enamide substrates for accessing 1,4,5,6-tetrahydropyridazines. A gram-scale experiment and further derivatizations of the polycyclic tetrahydropyridazine products were also conducted to verify the practicability of the methodology.
Collapse
Affiliation(s)
- Li-Wen Shen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Ting Li
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
15
|
Mlostoń G, Urbaniak K, Sobiecka M, Heimgartner H, Würthwein EU, Zimmer R, Lentz D, Reissig HU. Hetero-Diels-Alder Reactions of In Situ-Generated Azoalkenes with Thioketones; Experimental and Theoretical Studies. Molecules 2021; 26:2544. [PMID: 33925483 PMCID: PMC8123831 DOI: 10.3390/molecules26092544] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
The hetero-Diels-Alder reactions of in situ-generated azoalkenes with thioketones were shown to offer a straightforward method for an efficient and regioselective synthesis of scarcely known N-substituted 1,3,4-thiadiazine derivatives. The scope of the method was fairly broad, allowing the use of a series of aryl-, ferrocenyl-, and alkyl-substituted thioketones. However, in the case of N-tosyl-substituted cycloadducts derived from 1-thioxo-2,2,4,4-tetramethylcyclobutan-3-one and the structurally analogous 1,3-dithione, a more complicated pathway was observed. By elimination of toluene sulfinic acid, the initially formed cycloadducts afforded 2H-1,3,4-thiadiazines as final products. Advanced DFT calculations revealed that the observed high regioselectivity was due to kinetic reaction control and that the (4 + 2)-cycloadditions of sterically less unhindered thiones occurred via highly unsymmetric transition states with shorter C..S-distances (2.27-2.58 Å) and longer N..C-distances (3.02-3.57 Å). In the extreme case of the sterically very hindered 2,2,4,4-tetramethylcyclobutan-1,3-dione-derived thioketones, a zwitterionic intermediate with a fully formed C‒S bond was detected, which underwent ring closure to the 1,3,4-thiadiazine derivative in a second step. For the hypothetical formation of the regioisomeric 1,2,3-thiadiazine derivatives, the DFT calculations proposed more symmetric transition states with considerably higher energies.
Collapse
Affiliation(s)
- Grzegorz Mlostoń
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka Street, 91-403 Lodz, Poland; (K.U.); (M.S.)
| | - Katarzyna Urbaniak
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka Street, 91-403 Lodz, Poland; (K.U.); (M.S.)
| | - Malwina Sobiecka
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka Street, 91-403 Lodz, Poland; (K.U.); (M.S.)
| | - Heinz Heimgartner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland;
| | - Ernst-Ulrich Würthwein
- Organisch-Chemisches Institut and Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Reinhold Zimmer
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany; (R.Z.); (D.L.)
| | - Dieter Lentz
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany; (R.Z.); (D.L.)
| | - Hans-Ulrich Reissig
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany; (R.Z.); (D.L.)
| |
Collapse
|
16
|
Jin S, Wang L, Han H, Liu X, Bu Z, Wang Q. Assembly of functionalized π-extended indolizine polycycles through dearomative [3+2] cycloaddition/oxidative decarbonylation. Chem Commun (Camb) 2021; 57:359-362. [PMID: 33319883 DOI: 10.1039/d0cc07116a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Reported herein is an unexpected construction of functionalized π-extended indolizine polycycles through a one-pot two-step cascade process comprising the base-promoted dearomative [3+2] cycloaddition of quinilinium salts and 3-alkenyl oxindoles, followed by a DDQ-mediated oxidative decarbonylation. Moreover, we could achieve the substrate-controlled diverse synthesis of structurally strained cyclopropane spirooxindole by using pyridinium salts as starting materials.
Collapse
Affiliation(s)
- Shaojing Jin
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | | | | | | | | | | |
Collapse
|
17
|
Zuo WF, Zhou J, Wu YL, Fang HY, Lang XJ, Li Y, Zhan G, Han B. Synthesis of spiro(indoline-2,3′-hydropyridazine) via an “on-water” [4 + 2] annulation reaction. Org Chem Front 2021. [DOI: 10.1039/d0qo01422b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An on-water [4 + 2] annulation reaction between 2-methyl-3H-indolium salt and α-bromo N-acyl hydrazone has been developed. The environmentally friendly strategy provides the first facile access to spiro(indoline-2,3'-hydropyridazine) scaffolds.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Jin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Yu-Ling Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Hua-Ying Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Xing-Jiang Lang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Ya Li
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| |
Collapse
|
18
|
Xu FS, Yan C, Sun J, Yan CG. Efficient synthesis of tetra- and penta-substituted benzenes via a domino annulation reaction of a pyridinium ylide and chalcone o-enolate. NEW J CHEM 2021. [DOI: 10.1039/d1nj03772b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A very simple and highly efficient protocol for synthesizing tetra- and penta-substituted benzene derivatives has been developed.
Collapse
Affiliation(s)
- Feng-Shun Xu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chen Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
19
|
He XL, Wang C, Wen YW, Zhao YB, Yang H, Qian S, Yang L, Wang Z. Highly stereoselective dearomative [3 + 2] cycloadditon of cyclic pyridinium ylides to access spiro-indolizidine scaffolds. Org Chem Front 2021. [DOI: 10.1039/d1qo00886b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel type of pyridinium salt bearing a EWG on the pyridine was developed as an efficient pyridinium ylide precursor in the [3 + 2] cycloaddition with nitroolefins to construct various spiro-indolizidine scaffolds via a dearomative pathway.
Collapse
Affiliation(s)
- Xiao-Long He
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Cheng Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - You-Wu Wen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yi-Bing Zhao
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Huan Yang
- The management commission of Yibin campus, Xihua University, Yibin 644000, China
| | - Shan Qian
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Lingling Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhouyu Wang
- School of Science, Xihua University, Chengdu 610039, China
| |
Collapse
|
20
|
Yuan WC, Quan BX, Zhao JQ, You Y, Wang ZH, Zhou MQ. [4 + 2] Annulation Reaction of In Situ Generated Azoalkenes with Azlactones: Access to 4,5-Dihydropyridazin-3(2 H)-Ones. J Org Chem 2020; 85:11812-11821. [PMID: 32856456 DOI: 10.1021/acs.joc.0c01592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An unprecedented [4 + 2] annulation reaction between in situ formed azoalkenes and azlactones has been developed. This reaction provides a facile access to an array of 4,5-dihydropyridazin-3(2H)-one derivatives, which are very promising in medicinal applications as potential biologically active candidates. Notably, these dihydropyridazinones could also be synthesized via a one-pot reaction protocol by using the in situ formed azlactones from N-acyl amino acids and in situ generated azoalkenes from α-halogeno hydrazones. The potential applications of the methodology were also demonstrated by gram-scale experiments and the versatile conversions of the products into other nitrogen-containing compounds.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Bao-Xue Quan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
21
|
Funt LD, Novikov MS, Khlebnikov AF. New applications of pyridinium ylides toward heterocyclic synthesis. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|