1
|
Natashin PV, Burakova LP, Kovaleva MI, Shevtsov MB, Dmitrieva DA, Eremeeva EV, Markova SV, Mishin AV, Borshchevskiy VI, Vysotski ES. The Role of Tyr-His-Trp Triad and Water Molecule Near the N1-Atom of 2-Hydroperoxycoelenterazine in Bioluminescence of Hydromedusan Photoproteins: Structural and Mutagenesis Study. Int J Mol Sci 2023; 24:ijms24076869. [PMID: 37047842 PMCID: PMC10095345 DOI: 10.3390/ijms24076869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Hydromedusan photoproteins responsible for the bioluminescence of a variety of marine jellyfish and hydroids are a unique biochemical system recognized as a stable enzyme-substrate complex consisting of apoprotein and preoxygenated coelenterazine, which is tightly bound in the protein inner cavity. The binding of calcium ions to the photoprotein molecule is only required to initiate the light emission reaction. Although numerous experimental and theoretical studies on the bioluminescence of these photoproteins were performed, many features of their functioning are yet unclear. In particular, which ionic state of dioxetanone intermediate decomposes to yield a coelenteramide in an excited state and the role of the water molecule residing in a proximity to the N1 atom of 2-hydroperoxycoelenterazine in the bioluminescence reaction are still under discussion. With the aim to elucidate the function of this water molecule as well as to pinpoint the amino acid residues presumably involved in the protonation of the primarily formed dioxetanone anion, we constructed a set of single and double obelin and aequorin mutants with substitutions of His, Trp, Tyr, and Ser to residues with different properties of side chains and investigated their bioluminescence properties (specific activity, bioluminescence spectra, stopped-flow kinetics, and fluorescence spectra of Ca2+-discharged photoproteins). Moreover, we determined the spatial structure of the obelin mutant with a substitution of His64, the key residue of the presumable proton transfer, to Phe. On the ground of the bioluminescence properties of the obelin and aequorin mutants as well as the spatial structures of the obelin mutants with the replacements of His64 and Tyr138, the conclusion was made that, in fact, His residue of the Tyr-His-Trp triad and the water molecule perform the "catalytic function" by transferring the proton from solvent to the dioxetanone anion to generate its neutral ionic state in complex with water, as only the decomposition of this form of dioxetanone can provide the highest light output in the light-emitting reaction of the hydromedusan photoproteins.
Collapse
Affiliation(s)
- Pavel V Natashin
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Ludmila P Burakova
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Margarita I Kovaleva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Mikhail B Shevtsov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Daria A Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Svetlana V Markova
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| |
Collapse
|
2
|
Xie JM, Leng Y, Dong K, Cui XY, Yang XK, Min CG, Liu CX, Ren AM. Effect of double bond on electronic and optical properties of coelenteramide: A time-dependent density functional theory investigation. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Chen SF, Vysotski ES, Liu YJ. H 2O-Bridged Proton-Transfer Channel in Emitter Species Formation in Obelin Bioluminescence. J Phys Chem B 2021; 125:10452-10458. [PMID: 34520210 DOI: 10.1021/acs.jpcb.1c03985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioluminescence of a number of marine organisms is conditioned by Ca2+-regulated photoprotein (CaRP) with coelenterazine as the reaction substrate. The reaction product, coelenteramide, at the first singlet excited state (S1) is the emitter of CaRP. The S1-state coelenteramide is produced via the decomposition of coelenterazine dioxetanone. Experiments suggested that the neutral S1-coelenteramide is the primary emitter species. This supposition contradicts with theoretical calculations showing that the anionic S1-coelenteramide is a primary product of the decomposition of coelenterazine dioxetanone. In this study, applying molecular dynamic (MD) simulations and the hybrid quantum mechanics/molecular mechanics (QM/MM) method, we investigated a proton-transfer (PT) process taking place in CaRP obelin from Obelia longissima for emitter formation. Our calculations demonstrate a concerted PT process with a water molecule as a bridge between anionic S1-coelenteramide and the nearest histidine residue. The low activation barrier as well as the strong hydrogen-bond network between the proton donor and the proton acceptor suggests a fast PT process comparable with that of the lifetime of excited anionic S1-coelenteramide. The existence of the PT process eliminates the discrepancy between experimental and theoretical studies. The fast PT process at emitter formation can also take place in other CaRPs.
Collapse
Affiliation(s)
- Shu-Feng Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia
| | - Ya-Jun Liu
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China.,Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
6
|
Ding BW, Eremeeva EV, Vysotski ES, Liu YJ. Luminescence Activity Decreases When v-coelenterazine Replaces Coelenterazine in Calcium-Regulated Photoprotein-A Theoretical and Experimental Study. Photochem Photobiol 2020; 96:1047-1060. [PMID: 32416626 DOI: 10.1111/php.13280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 11/27/2022]
Abstract
Calcium-regulated photoproteins are found in at least five phyla of organisms. The light emitted by those photoproteins can be tuned by mutating the photoprotein and/or by modifying the substrate coelenterazine (CTZ). Thirty years ago, Shimomura observed that the luminescence activity of aequorin was dramatically reduced when the substrate CTZ was replaced by its analog v-CTZ. The latter is formed by adding a phenyl ring to the π-conjugated moiety of CTZ. The decrease in luminescence activity has not been understood until now. In this paper, through combined quantum mechanics and molecular mechanics calculations as well as molecular dynamics simulations, we discovered the reason for this observation. Modification of the substrate changes the conformation of nearby aromatic residues and enhances the π-π stacking interactions between the conjugated moiety of v-CTZ and the residues, which weakens the charge transfer to form light emitter and leads to a lower luminescence activity. The microenvironments of CTZ in obelin and in aequorin are very similar, so we predicted that the luminescence activity of obelin will also dramatically decrease when CTZ is replaced by v-CTZ. This prediction has received strong evidence from currently theoretical calculations and has been verified by experiments.
Collapse
Affiliation(s)
- Bo-Wen Ding
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|