1
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
2
|
Jin L, Xu W, Wen H, Wang Y, Zhang F. Imparting Waterproofing Properties to Leather by Polymer Nanoemulsion Based on Long-Chain Alkyl Acrylate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1464. [PMID: 36837094 PMCID: PMC9959095 DOI: 10.3390/ma16041464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The demand for waterproof leather has been increasing, and environmentally friendly waterproof fatliquors have recently received increasing attention. In this work, two polymer nanoemulsions containing carboxyl groups were synthesized and used as waterproof fatliquors for chrome-tanned leather. First, a reactive emulsifier (C12-Na) was prepared using itaconic anhydride and lauryl alcohol. Subsequently, two polymer nanoemulsions were prepared through mini-emulsion polymerization with C12-Na as the emulsifier, 4,4'-azobis (4-cyanovaleric acid) as the initiator, and lauryl acrylate (LA)/stearyl acrylate (SA) as monomers; these were named PLA and PSA. PLA and PSA were characterized using FT-IR, a Zetasizer, and GPC. It was found that the critical micellar concentration (CMC) of C12-Na was 2.34 mmol/L, which could reduce the surface tension of water to 26.61 mN/m. The average particle sizes of PLA and PSA were 53.39 and 67.90 nm, respectively. The maeser flexes of leather treated with PLA and PSA were 13928 and 19492 at a 5% dosage, respectively, and the contact angles reached 148.4° and 150.3°, respectively; these values were both higher than for a conventional fatliquor. Compared with PLA, the leather treated with PSA exhibited better fullness, and tensile and tearing strength. The prepared nanoemulsions have prospective applications in leather manufacturing as waterproof fatliquors.
Collapse
Affiliation(s)
- Liqiang Jin
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Key Laboratory for Green Technology of Leather Manufacture, China National Light Industry Council, Jinan 250353, China
| | - Wenbin Xu
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Key Laboratory for Green Technology of Leather Manufacture, China National Light Industry Council, Jinan 250353, China
| | - Hongmei Wen
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Key Laboratory for Green Technology of Leather Manufacture, China National Light Industry Council, Jinan 250353, China
| | - Yulu Wang
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Key Laboratory for Green Technology of Leather Manufacture, China National Light Industry Council, Jinan 250353, China
| | - Feifei Zhang
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Key Laboratory for Green Technology of Leather Manufacture, China National Light Industry Council, Jinan 250353, China
| |
Collapse
|
3
|
Wan J, Fan B, Thang SH. RAFT-mediated polymerization-induced self-assembly (RAFT-PISA): current status and future directions. Chem Sci 2022; 13:4192-4224. [PMID: 35509470 PMCID: PMC9006902 DOI: 10.1039/d2sc00762b] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and self-assembly in a single step with distinct efficiency that has set it apart from the conventional solution self-assembly processes. PISA holds great promise for large-scale production, not only because of its efficient process for producing nano/micro-particles with high solid content, but also thanks to the facile control over the particle size and morphology. Since its invention, many research groups around the world have developed new and creative approaches to broaden the scope of PISA initiations, morphologies and applications, etc. The growing interest in PISA is certainly reflected in the increasing number of publications over the past few years, and in this review, we aim to summarize these recent advances in the emerging aspects of RAFT-mediated PISA. These include (1) non-thermal initiation processes, such as photo-, enzyme-, redox- and ultrasound-initiation; the achievements of (2) high-order structures, (3) hybrid materials and (4) stimuli-responsive nano-objects by design and adopting new monomers and new processes; (5) the efforts in the realization of upscale production by utilization of high throughput technologies, and finally the (6) applications of current PISA nano-objects in different fields and (7) its future directions.
Collapse
Affiliation(s)
- Jing Wan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - Bo Fan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - San H Thang
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
4
|
Yang X, Yang S, Wang L. Cellulose or chitin nanofibril-stabilized latex for medical adhesion via tailoring colloidal interactions. Carbohydr Polym 2022; 278:118916. [PMID: 34973735 DOI: 10.1016/j.carbpol.2021.118916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/24/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
The objective of this research is to develop a functional medical adhesive from natural nanofibril-stabilized latex through an aqueous process. Surface charged cellulose or chitin nanofibrils are used to form Pickering emulsions of acrylic monomers, followed by in situ polymerization. Charged initiators are selected to tailor the interactions between them and nanofibrils, and it is found that the repulsive electrostatic interactions play a key role in stabilizing the heterogeneous system. As a result, poly(2-ethylhexyl acrylate-co-methyl methacrylate) latexes are successfully prepared for surfactant-free adhesives with a high shear strength of 72.0 ± 6.5 kPa. In addition, drug can be easily incorporated in the nanopaper substrate or adhesive layer to form a medical tape, exhibiting long-term drug release and antibacterial behaviors. We managed developing a facile method to integrate green synthesis, versatile functionalities and excellent adhesion into one adhesive, which remains a great challenge.
Collapse
Affiliation(s)
- Xianpeng Yang
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Shuang Yang
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Lei Wang
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
5
|
Judge N, Pavlovic D, Moldenhauer E, Clarke P, Brannigan R, Heise A. Influence of the block copolypeptide surfactant structure on the size of polypeptide nanoparticles obtained by mini emulsion polymerisation. Polym Chem 2022. [DOI: 10.1039/d2py00331g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polypetide nanoparticles obtained by miniemulsion polymerisation of amino acid N-carboxyanhydrides (NCA) are a novel class of tuneable bio-derived functional nano materials for potential applications in nutraceutics, agriculture, and medicine. This...
Collapse
|
6
|
Niu B, Chen Y, Zhang L, Tan J. Organic–inorganic hybrid nanomaterials prepared via polymerization-induced self-assembly: recent developments and future opportunities. Polym Chem 2022. [DOI: 10.1039/d2py00180b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review highlights recent developments in the preparation of organic–inorganic hybrid nanomaterials via polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Bing Niu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
7
|
Zhang C, Li J, Cui N, Yan X, Xie Z, Qi D. Polymer/C.I. Pigment Red 170 hybrid latexes prepared by RAFT-mediated surfactant-free emulsion polymerization. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Biglione C, Neumann‐Tran TMP, Kanwal S, Klinger D. Amphiphilic micro‐ and nanogels: Combining properties from internal hydrogel networks, solid particles, and micellar aggregates. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Catalina Biglione
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| | | | - Sidra Kanwal
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| |
Collapse
|
9
|
Beyou E, Bourgeat-Lami E. Organic–inorganic hybrid functional materials by nitroxide-mediated polymerization. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Polymer/Laponite Nanocomposite Films Produced from Surfactant-Free Latexes using Cationic Macromolecular Reversible Addition-Fragmentation Chain Transfer Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Han D, Zhou DL, Guo QY, Lin X, Zhang Q, Fu Q. Engineering the Surface Pattern of Microparticles: From Raspberry-like to Golf Ball-like. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31215-31225. [PMID: 34169717 DOI: 10.1021/acsami.1c08663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Control of the shape and uniformity of colloid particles is essential for realizing their functionality in various applications. Herein, we report a facile approach for the synthesis of narrowly dispersed anisotropic microparticles with well-defined raspberry-like and golf ball-like surface patterns. First, we demonstrate that hybrid raspberry-like particles can be achieved through a one-pot polymerization method using glycidyl polyhedral oligomeric silsesquioxane (GPOSS) and pentaerythritol tetra(3-mercaptopropionate) (PETMP) as monomers. Varying the polymerization parameters such as catalyst loading, monomer concentration, and the molar ratio of monomers, we are able to regulate the sizes and surface protrusion numbers of these raspberry-like microparticles. The formation mechanism is attributed to a competition balance between thiol-epoxy reaction and thiol-thiol coupling reaction. The former promotes rapid formation of large core particles between PETMP and GPOSS droplets (which can serve as core particles), while the latter allows for generation of surface protrusions by PETMP self-polymerization, leading to the formation of raspberry-like surface patterns. Based on the different POSS contents in the surface protrusions and cores of the raspberry-like microparticles, we demonstrate that they can be used as precursors to produce microporous silica (sub)microparticles with golf ball-like morphology via pyrolysis subsequently. Overall, this work provides a facile yet controllable approach to synthesize narrowly dispersed anisotropic microparticles with diverse surface patterns.
Collapse
Affiliation(s)
- Di Han
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Dai-Lin Zhou
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qing-Yun Guo
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiong Lin
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qin Zhang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qiang Fu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
12
|
|
13
|
Nahar Y, Thickett SC. Greener, Faster, Stronger: The Benefits of Deep Eutectic Solvents in Polymer and Materials Science. Polymers (Basel) 2021; 13:447. [PMID: 33573280 PMCID: PMC7866798 DOI: 10.3390/polym13030447] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
Deep eutectic solvents (DESs) represent an emergent class of green designer solvents that find numerous applications in different aspects of chemical synthesis. A particularly appealing aspect of DES systems is their simplicity of preparation, combined with inexpensive, readily available starting materials to yield solvents with appealing properties (negligible volatility, non-flammability and high solvation capacity). In the context of polymer science, DES systems not only offer an appealing route towards replacing hazardous volatile organic solvents (VOCs), but can serve multiple roles including those of solvent, monomer and templating agent-so called "polymerizable eutectics." In this review, we look at DES systems and polymerizable eutectics and their application in polymer materials synthesis, including various mechanisms of polymer formation, hydrogel design, porous monoliths, and molecularly imprinted polymers. We provide a comparative study of these systems alongside traditional synthetic approaches, highlighting not only the benefit of replacing VOCs from the perspective of environmental sustainability, but also the materials advantage with respect to mechanical and thermal properties of the polymers formed.
Collapse
Affiliation(s)
| | - Stuart C. Thickett
- School of Natural Sciences—Chemistry, University of Tasmania, Hobart, TAS 7001, Australia;
| |
Collapse
|
14
|
Andriotis EG, Papi RM, Paraskevopoulou A, Achilias DS. Synthesis of D-Limonene Loaded Polymeric Nanoparticles with Enhanced Antimicrobial Properties for Potential Application in Food Packaging. NANOMATERIALS 2021; 11:nano11010191. [PMID: 33451168 PMCID: PMC7828745 DOI: 10.3390/nano11010191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
Mini-emulsion polymerization was applied for the synthesis of cross-linked polymeric nanoparticles comprised of methyl methacrylate (MMA) and Triethylene Glycol Dimethacrylate (TEGDMA) copolymers, used as matrix-carriers for hosting D-limonene. D-limonene was selected as a model essential oil, well known for its pleasant odor and its enhanced antimicrobial properties. The synthesized particles were assessed for their morphology and geometric characteristics by Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM), which revealed the formation of particles with mean diameters at the nanoscale (D[3,2] = 0.135 μm), with a spherical shape, while the dried particles formed larger clusters of several microns (D[3,2] = 80.69 μm). The percentage of the loaded D-limonene was quantified by Thermogravimetric Analysis (TGA), complemented by Gas Chromatography-Mass Spectrometry analysis coupled with a pyrolysis unit (Py/GC-MS). The results showed that the volatiles emitted by the nanoparticles were composed mainly of D-limonene (10% w/w of dry particles). Particles subjected to higher temperatures tended to decompose. The mechanism that governs the release of D-limonene from the as-synthesized particles was studied by fitting mathematical models to the release data obtained by isothermal TGA analysis of the dry particles subjected to accelerated conditions. The analysis revealed a two-stage release of the volatiles, one governed by D-limonene release and the other governed by TEGDMA release. Finally, the antimicrobial potency of the D-limonene-loaded particles was demonstrated, indicating the successful synthesis of polymeric nanoparticles loaded with D-limonene, owing to enhanced antimicrobial properties. The overall performance of these nanoparticles renders them a promising candidate material for the formation of self-sterilized surfaces with enhanced antimicrobial activity and potential application in food packaging.
Collapse
Affiliation(s)
- Eleftherios G. Andriotis
- Laboratory of Polymer and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rigini M. Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Adamantini Paraskevopoulou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitris S. Achilias
- Laboratory of Polymer and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2310-997822
| |
Collapse
|
15
|
Tian M, Ma C, Huang X, Lu G, Feng C. Supramolecular-micelle-directed preparation of uniform magnetic nanofibers with length tunability, colloidal stability and capacity for surface functionalization. Polym Chem 2021. [DOI: 10.1039/d1py00168j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report a versatile and efficient platform to prepare uniform magnetic nanofibers with length tunability, colloidal and morphological stability, capacity for surface functionalization and enhanced T2 contrast.
Collapse
Affiliation(s)
- Mingwei Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Chen Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
16
|
Mao W, Sarkar J, Peng B, Goto A. Aqueous emulsion polymerizations of methacrylates and styrene via reversible complexation mediated polymerization (RCMP). Polym Chem 2021. [DOI: 10.1039/d1py01087e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aqueous emulsion polymerization via reversible complexation mediated living radical polymerization yielded low-dispersity poly(methyl methacrylate)s and polystyrenes.
Collapse
Affiliation(s)
- Weijia Mao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Jit Sarkar
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Bo Peng
- BASF Advanced Chemicals Co., Ltd, R&D I, No 300, Jiangxinsha Road, 200137 Shanghai, China
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
17
|
|
18
|
Zia A, Pentzer E, Thickett S, Kempe K. Advances and Opportunities of Oil-in-Oil Emulsions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38845-38861. [PMID: 32805925 DOI: 10.1021/acsami.0c07993] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Emulsions are mixtures of two immiscible liquids in which droplets of one are dispersed in a continuous phase of the other. The most common emulsions are oil-water systems, which have found widespread use across a number of industries, for example, in the cosmetic and food industries, and are also of advanced scientific interest. In addition, the past decade has seen a significant increase in both the design and application of nonaqueous emulsions. This has been primarily driven by developments in understanding the mechanism of effective stabilization of oil-in-oil (o/o) systems, either using block copolymers (BCPs) or solid (Pickering) particles with appropriate surface functionality. These systems, as highlighted in this review, have enabled emergent applications in areas such as pharmaceutical delivery, energy storage, and materials design (e.g., polymerization, monolith, and porous polymer synthesis). These o/o emulsions complement traditional emulsions that utilize an aqueous phase and allow the use of materials incompatible with water. We assess recent advances in the preparation and stabilization of o/o emulsions, focusing on the identity of the stabilizer (BCP or particle), the interplay between stabilizer and oils, and highlighting applications and opportunities associated with o/o emulsions.
Collapse
Affiliation(s)
- Aadarash Zia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Emily Pentzer
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77807, United States
| | - Stuart Thickett
- School of Natural Sciences (Chemistry), The University of Tasmania, Hobart, Tasmania 7001 Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
19
|
Zamani Kouhpanji MR, Stadler BJH. A Guideline for Effectively Synthesizing and Characterizing Magnetic Nanoparticles for Advancing Nanobiotechnology: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2554. [PMID: 32365832 PMCID: PMC7248791 DOI: 10.3390/s20092554] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
The remarkable multimodal functionalities of magnetic nanoparticles, conferred by their size and morphology, are very important in resolving challenges slowing the progression of nanobiotechnology. The rapid and revolutionary expansion of magnetic nanoparticles in nanobiotechnology, especially in nanomedicine and therapeutics, demands an overview of the current state of the art for synthesizing and characterizing magnetic nanoparticles. In this review, we explain the synthesis routes for tailoring the size, morphology, composition, and magnetic properties of the magnetic nanoparticles. The pros and cons of the most popularly used characterization techniques for determining the aforementioned parameters, with particular focus on nanomedicine and biosensing applications, are discussed. Moreover, we provide numerous biomedical applications and highlight their challenges and requirements that must be met using the magnetic nanoparticles to achieve the most effective outcomes. Finally, we conclude this review by providing an insight towards resolving the persisting challenges and the future directions. This review should be an excellent source of information for beginners in this field who are looking for a groundbreaking start but they have been overwhelmed by the volume of literature.
Collapse
Affiliation(s)
- Mohammad Reza Zamani Kouhpanji
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bethanie J. H. Stadler
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
20
|
Welch PM, Dreier TA, Magurudeniya HD, Frith MG, Ilavsky J, Seifert S, Rahman AK, Rahman A, Singh AJ, Ringstrand BS, Hanson CJ, Hollingsworth JA, Firestone MA. 3D Volumetric Structural Hierarchy Induced by Colloidal Polymerization of a Quantum-Dot Ionic Liquid Monomer Conjugate. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul M. Welch
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Timothy A. Dreier
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Matthew G. Frith
- X-ray Sciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jan Ilavsky
- X-ray Sciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sönke Seifert
- X-ray Sciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Aunik K. Rahman
- Applied Research & Photonics, Inc., Harrisburg, Pennsylvania 17111, United States
| | - Anis Rahman
- Applied Research & Photonics, Inc., Harrisburg, Pennsylvania 17111, United States
| | - Amita Joshi Singh
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | | | | | | |
Collapse
|
21
|
Gessner I, Neundorf I. Nanoparticles Modified with Cell-Penetrating Peptides: Conjugation Mechanisms, Physicochemical Properties, and Application in Cancer Diagnosis and Therapy. Int J Mol Sci 2020; 21:E2536. [PMID: 32268473 PMCID: PMC7177461 DOI: 10.3390/ijms21072536] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
Based on their tunable physicochemical properties and the possibility of producing cell-specific platforms through surface modification with functional biomolecules, nanoparticles (NPs) represent highly promising tools for biomedical applications. To improve their potential under physiological conditions and to enhance their cellular uptake, combinations with cell-penetrating peptides (CPPs) represent a valuable strategy. CPPs are often cationic peptide sequences that are able to translocate across biological membranes and to carry attached cargos inside cells and have thus been recognized as versatile tools for drug delivery. Nevertheless, the conjugation of CPP to NP surfaces is dependent on many properties from both individual components, and further insight into this complex interplay is needed to allow for the fabrication of highly stable but functional vectors. Since CPPs per se are nonselective and enter nearly all cells likewise, additional decoration of NPs with homing devices, such as tumor-homing peptides, enables the design of multifunctional platforms for the targeted delivery of chemotherapeutic drugs. In this review, we have updated the recent advances in the field of CPP-NPs, focusing on synthesis strategies, elucidating the influence of different physicochemical properties, as well as their application in cancer research.
Collapse
Affiliation(s)
- Isabel Gessner
- Department of Chemistry, Inorganic Chemistry, University of Cologne, Greinstr 6, 50939 Cologne, Germany;
| | - Ines Neundorf
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
22
|
Cavell AC, Krasecki VK, Li G, Sharma A, Sun H, Thompson MP, Forman CJ, Guo SY, Hickman RJ, Parrish KA, Aspuru-Guzik A, Cronin L, Gianneschi NC, Goldsmith RH. Optical monitoring of polymerizations in droplets with high temporal dynamic range. Chem Sci 2020; 11:2647-2656. [PMID: 34084323 PMCID: PMC8157680 DOI: 10.1039/c9sc05559b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/02/2020] [Indexed: 12/23/2022] Open
Abstract
The ability to optically monitor a chemical reaction and generate an in situ readout is an important enabling technology, with applications ranging from the monitoring of reactions in flow, to the critical assessment step for combinatorial screening, to mechanistic studies on single reactant and catalyst molecules. Ideally, such a method would be applicable to many polymers and not require only a specific monomer for readout. It should also be applicable if the reactions are carried out in microdroplet chemical reactors, which offer a route to massive scalability in combinatorial searches. We describe a convenient optical method for monitoring polymerization reactions, fluorescence polarization anisotropy monitoring, and show that it can be applied in a robotically generated microdroplet. Further, we compare our method to an established optical reaction monitoring scheme, the use of Aggregation-Induced Emission (AIE) dyes, and find the two monitoring schemes offer sensitivity to different temporal regimes of the polymerization, meaning that the combination of the two provides an increased temporal dynamic range. Anisotropy is sensitive at early times, suggesting it will be useful for detecting new polymerization "hits" in searches for new reactivity, while the AIE dye responds at longer times, suggesting it will be useful for detecting reactions capable of reaching higher molecular weights.
Collapse
Affiliation(s)
- Andrew C Cavell
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Veronica K Krasecki
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Guoping Li
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Abhishek Sharma
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow Scotland G12 8QQ UK
| | - Hao Sun
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Matthew P Thompson
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Christopher J Forman
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Si Yue Guo
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George Street Toronto Ontario M5S 2E4 Canada
| | - Riley J Hickman
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George Street Toronto Ontario M5S 2E4 Canada
| | - Katherine A Parrish
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George Street Toronto Ontario M5S 2E4 Canada
- Canadian Institute for Advanced Research (CIFAR) Senior Fellow Toronto Ontario M5S 1M1 Canada
- CIFAR Artificial Intelligence Chair, Vector Institute Toronto Ontario M5S 1M1 Canada
| | - Leroy Cronin
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow Scotland G12 8QQ UK
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
23
|
Spick MP, Bingham NM, Li Y, de Jesus J, Costa C, Bailey MJ, Roth PJ. Fully Degradable Thioester-Functional Homo- and Alternating Copolymers Prepared through Thiocarbonyl Addition–Ring-Opening RAFT Radical Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02497] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Abstract
The strategies used for the preparation of raspberry-like polymer composite particles are summarized comprehensively.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Shuxia Zhai
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| |
Collapse
|
25
|
Scott PJ, Kasprzak CR, Feller KD, Meenakshisundaram V, Williams CB, Long TE. Light and latex: advances in the photochemistry of polymer colloids. Polym Chem 2020. [DOI: 10.1039/d0py00349b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Unparalleled temporal and spatial control of colloidal chemical processes introduces immense potential for the manufacturing, modification, and manipulation of latex particles.
Collapse
Affiliation(s)
- Philip J. Scott
- Department of Chemistry
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | | | - Keyton D. Feller
- Department of Mechanical Engineering
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | | | - Christopher B. Williams
- Department of Mechanical Engineering
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | - Timothy E. Long
- Department of Chemistry
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| |
Collapse
|
26
|
Hamilton HSC, Bradley LC. Probing the morphology evolution of chemically anisotropic colloids prepared by homopolymerization- and copolymerization-induced phase separation. Polym Chem 2020. [DOI: 10.1039/c9py01166h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemically anisotropic colloids prepared by polymerization-induced phase separation during seeded emulsion polymerization with non-crosslinked seeds reveals tunability in both surface and interior properties based on the morphology evolution.
Collapse
Affiliation(s)
- Heather S. C. Hamilton
- Department of Polymer Science and Engineering
- University of Massachusetts Amherst
- Amherst
- USA
| | - Laura C. Bradley
- Department of Polymer Science and Engineering
- University of Massachusetts Amherst
- Amherst
- USA
| |
Collapse
|
27
|
Liu H, Shi J, Pu Y, Wang JX, Wang D, Chen JF. In situ visualization and real-time tracking of emulsion and miniemulsion polymerization at the microscale via fluorescence imaging. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Mehravar S, Ballard N, Tomovska R, Asua JM. Polyurethane/Acrylic Hybrid Waterborne Dispersions: Synthesis, Properties and Applications. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02324] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Samane Mehravar
- POLYMAT and Departamento de Química Aplicada, University of the Basque Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, Donostia-San Sebastian 20018, Spain
| | - Nicholas Ballard
- POLYMAT and Departamento de Química Aplicada, University of the Basque Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, Donostia-San Sebastian 20018, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Radmila Tomovska
- POLYMAT and Departamento de Química Aplicada, University of the Basque Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, Donostia-San Sebastian 20018, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - José M. Asua
- POLYMAT and Departamento de Química Aplicada, University of the Basque Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, Donostia-San Sebastian 20018, Spain
| |
Collapse
|