1
|
Lee H, Trinh BM, Mekonnen TH. Fabrication of Triblock Elastomer Foams and Gelation Studies for Oil Spill Remediation. Macromol Rapid Commun 2024; 45:e2400232. [PMID: 38840422 DOI: 10.1002/marc.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Polymeric foamed materials are among the most widely utilized technologies for oil spill accidents and releases of oil-contaminated wastewater oil due to their porosity to absorb and separate oil/water effectively. However, a major limitation of traditional polymeric foams is their reliance on an ad/absorption mechanism as the sole method of oil capture, leading to potential oil leakage once their saturation point is exceeded. Tri-block polymer styrene-ethylene-butylene-styrene (SEBS) is a fascinating absorbent material that can bypass this limitation by both capturing oil and providing a sealing mechanism via gelation to prevent oil leakage due to its unique chemical structure. SEBS foams are produced via simultaneous crosslinking and foaming that results in an impressive expansion ratio of up to 15.2 with over 93% porosity. Most importantly, the SEBS foams show great potential as oil absorbents in spill remediation, demonstrating rapid and efficient oil absorption coupled with superhydrophobic properties. Moreover, the unique interaction between the oil and SEBS enables the formation of a physical gel, acting as an effective barrier against oil leakage. These findings indicate the potential for commercializing SEBS foam as a viable option for geotextiles to mitigate oil spill concerns from infrastructures.
Collapse
Affiliation(s)
- Hyejin Lee
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, N2V 0E6, Canada
| | - Binh M Trinh
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, N2V 0E6, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, N2V 0E6, Canada
| |
Collapse
|
2
|
Skandalis A, Sentoukas T, Selianitis D, Balafouti A, Pispas S. Using RAFT Polymerization Methodologies to Create Branched and Nanogel-Type Copolymers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1947. [PMID: 38730753 PMCID: PMC11084462 DOI: 10.3390/ma17091947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
This review aims to highlight the most recent advances in the field of the synthesis of branched copolymers and nanogels using reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT polymerization is a reversible deactivation radical polymerization technique (RDRP) that has gained tremendous attention due to its versatility, compatibility with a plethora of functional monomers, and mild polymerization conditions. These parameters lead to final polymers with good control over the molar mass and narrow molar mass distributions. Branched polymers can be defined as the incorporation of secondary polymer chains to a primary backbone, resulting in a wide range of complex macromolecular architectures, like star-shaped, graft, and hyperbranched polymers and nanogels. These subcategories will be discussed in detail in this review in terms of synthesis routes and properties, mainly in solutions.
Collapse
Affiliation(s)
- Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Theodore Sentoukas
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Anastasia Balafouti
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| |
Collapse
|
3
|
Maity T, Paul S, De P. Side-chain amino acid-based macromolecular architectures. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2169158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Tanmoy Maity
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Soumya Paul
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
4
|
Saharan Y, Singh J, Goyat R, Umar A, Akbar S, Ibrahim AA, Baskoutas S. Novel supramolecular organo-oil gelators for fast and effective oil trapping: Mechanism and applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129977. [PMID: 36193609 DOI: 10.1016/j.jhazmat.2022.129977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
In this paper, for the sorption of oil from oil polluted soil/water systems, nine new supramolecular organo-oil gelators were synthesized using three distinct diisocyanates and alcohols. The manufactured gelators were characterized using various techniques. The Fourier transform infrared (FTIR) and mass spectra confirmed the successful formation of the oil gelators. The synthesis of the proposed gelators was confirmed by the 1H NMR, which exhibited three singlets that were attributed to an aliphatic side chain containing 29 protons. The scanning electron microscopy (SEM) analysis exhibited porous, sheets, prisms, and fibrous structures for the supramolecular oil gelators. The oil uptake data analysis was subjected to the Langmuir and Freundlich isotherm models which showed the R2 value of 0.99 and a maximum adsorption capacity (qmax) of 45 mLg-1. From the mechanistic point of view, it was proposed that the organo-oil gel initially leads to self-assembly and further entanglements forming the fibers, which finally make a trap for the oil molecules. Among all the nine gelators and different combinations used, the combination of ditetradecyl (TDI 14: DMI14: HMI 14) gelators in the ratio of 1:2:1 exhibited maximum oil uptake of ∼58% initially which further boosted to ∼99% using gasoline as the co-congealed solvent. Interestingly, the complete gelation of the oil from the oil-water mixture was achieved within 30 min of application with high oil recovery. The presented study confirmed that the oil removal by organo-oil gelator is a simple, novel, and facile technique, which could be employed for treating oil-contaminated soil/water mixture.
Collapse
Affiliation(s)
- Yajvinder Saharan
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133203, Haryana, India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133203, Haryana, India.
| | - Rohit Goyat
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133203, Haryana, India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Kingdom of Saudi Arabia
| | | |
Collapse
|
5
|
Nayak K, De P. Crosslinked polymethacrylate absorbent with phenylalanine and stearate pendants. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2141124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kasturee Nayak
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| |
Collapse
|
6
|
Damavandi F, Soares JBP. Facile and Efficient Phase-Selective Powder Polymer Organogelator for Oil Spill Remediation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12666-12673. [PMID: 36194557 DOI: 10.1021/acs.langmuir.2c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phase-selective organogelators that gel oils from oil/water mixtures are useful to remediate oil spills on water. We designed and synthesized polymer organogelators, poly(styrene-co-10-undecenoic acid) with five different 10-undecenoic acid contents that could be added as powders at room temperature to gel oils with different viscosities. The morphologies and mechanical strengths of the gels were investigated using field-emission electron microscopy and rheological measurements, respectively. The gels formed porous fibrillar structures and had high stiffness. Fourier transformm infrared (FTIR) spectroscopy studies of these gels showed that hydrogen bonding and van der Waals forces helped create three-dimensional networks. The straightforward synthesis procedure, room-temperature conditions, and easy powder delivery make poly(styrene-co-10-undecenoic acid) an attractive alternative to existing oil spill response methods.
Collapse
Affiliation(s)
- Fereshte Damavandi
- Department of Chemical and Material Engineering, University of Alberta, 9211 116 St., Edmonton, AlbertaT6G 1H9, Canada
| | - João B P Soares
- Department of Chemical and Material Engineering, University of Alberta, 9211 116 St., Edmonton, AlbertaT6G 1H9, Canada
| |
Collapse
|
7
|
Pandey N, Ojha U. Bio‐based polydimethylsiloxane porous sponge materials with programmable hydrophobicity and porosity for efficient separation of hydrophobic liquids from water. J Appl Polym Sci 2022. [DOI: 10.1002/app.51823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Niharika Pandey
- Department of Chemistry Rajiv Gandhi Institute of Petroleum Technology Jais India
| | - Umaprasana Ojha
- Department of Chemistry Rajiv Gandhi Institute of Petroleum Technology Jais India
| |
Collapse
|
8
|
|
9
|
Nayak K, Ghosh P, Khan MEH, De P. Side‐chain amino‐acid‐based polymers: self‐assembly and bioapplications. POLYM INT 2021. [DOI: 10.1002/pi.6278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kasturee Nayak
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia India
| | - Pooja Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia India
| | - Md Ezaz Hasan Khan
- School of General Education, College of the North Atlantic – Qatar Doha Qatar
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia India
| |
Collapse
|
10
|
Wang B, Feng C, Dang J, Zhu Y, Yang X, Zhang T, Zhang R, Li J, Tang J, Shen C, Shen L, Dong J, Zhang X. Preparation of Fibroblast Suppressive Poly(ethylene glycol)- b-poly(l-phenylalanine)/Poly(ethylene glycol) Hydrogel and Its Application in Intrauterine Fibrosis Prevention. ACS Biomater Sci Eng 2020; 7:311-321. [PMID: 33455202 DOI: 10.1021/acsbiomaterials.0c01390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrauterine adhesions (IUA) often occur as a result of trauma to the basal layer after curettage, postpartum hemorrhage, or surgical miscarriage. Endometrial fibrosis is the primary pathological feature of IUA. The characteristic features of IUA include excessive deposition and reorganization of the extracellular matrix, replacing the normal endometrium. To prevent uterine fibrosis after injury, we prepared and evaluated a type of fibroblast suppressive hydrogel. Poly(ethylene glycol)-b-poly(l-phenylalanine) (PEBP) copolymers were successfully synthesized by ring opening polymerization of l-Phenylalanine N-carboxyanhydride, initiated by methoxy-poly(ethylene glycol)-amine. Injectable PEBP/PEG hydrogels were subsequently formed through π-π accumulations between PEBP macromolecules and hydrogen bonds among PEBP, PEG, and H2O molecules. PEBP/PEG hydrogel could suppress the proliferation of fibroblasts due to the action of l-Phe, released sustainably from PEBP/PEG gels. Lastly, the in vivo preventive effect of PEBP/PEG hydrogel on fibrosis was evaluated in a rat uterine curettage model. It was found that PEBP/PEG hydrogel suppressed uterine fibrosis caused by curettage and promoted embryo implantation in injured uterine by regulating the expression and interactions of transforming growth factor beta 1 (TGF-β1) and Muc-4. PEBP/PEG hydrogels have the potential for application in uterine adhesion prevention owing to their fibrosis preventive and pregnancy promotiing effects on uterine tissue after injury.
Collapse
Affiliation(s)
- Bing Wang
- Medical Imaging Key Laboratory of Sichuan Province & Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Chengmin Feng
- Otorhinolaryngology, Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jiafeng Dang
- Gynecology and Obstetrics, Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Yanghui Zhu
- School of Pharmacy, North Sichuan Medical College, 637000 Nanchong, P. R. China
| | - Xiaomei Yang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, P. R. China
| | - Ting Zhang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, P. R. China
| | - Ruqin Zhang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, P. R. China
| | - Jiawen Li
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, P. R. China
| | - Jing Tang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, P. R. China
| | - Chengyi Shen
- Medical Imaging Key Laboratory of Sichuan Province & Institute of Morphological Research, North Sichuan Medical College, Nanchong, P. R. China
| | - Lunhua Shen
- Department of Gynecology and Obstetrics, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jun Dong
- Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Xiaoming Zhang
- Medical Imaging Key Laboratory of Sichuan Province & Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
11
|
Vibhute AM, Sureshan KM. How Far Are We in Combating Marine Oil Spills by Using Phase-Selective Organogelators? CHEMSUSCHEM 2020; 13:5343-5360. [PMID: 32808717 DOI: 10.1002/cssc.202001285] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Marine oil spills is one of the frequent natural disasters that adversely affect the economy and ecosystem. A variety of methods have been developed to combat marine oil spills. However, none of these methods is ideal and universal for tackling different kinds of oil spills. In addition, most of these methods do not offer the possibility for recovering the spilt oil. There is great interest in developing novel and better methods for combating marine oil spills that allow recovery of the spilt oil. The use of low molecular weight organogelators that can selectively congeal oil from oil-water mixtures have been proposed to be useful for oil spill recovery. From this initial proposal, the area has progressed gradually towards their practical implementation. The advancements and novel concepts in this area are reviewed.
Collapse
Affiliation(s)
- Amol M Vibhute
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
12
|
Bhattacharya S, Patra D, Shunmugam R. Triphenylphosphonium conjugated quaternary ammonium based gel: synthesis and potential application in the efficient removal of toxic acid orange 7 dye from aqueous solution. NEW J CHEM 2020. [DOI: 10.1039/d0nj02138e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The concerted influence of quaternary ammonium and triphenylphosphonium moieties in a gel for removal of acid orange 7 from aqueous solutions.
Collapse
Affiliation(s)
- Sayantani Bhattacharya
- Polymer Research Centre
- Department of Chemical Sciences and Centre for Advanced Functional Materials
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Diptendu Patra
- Polymer Research Centre
- Department of Chemical Sciences and Centre for Advanced Functional Materials
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Raja Shunmugam
- Polymer Research Centre
- Department of Chemical Sciences and Centre for Advanced Functional Materials
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| |
Collapse
|
13
|
Effects of Main-chain and Chain-ends on the Organogelation of Stearoyl Appended Pendant Valine Based Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2265-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|