1
|
Cheung CS, Qiu Z, Li D, Deng H, Zheng H, Gao H. Experimental and theoretical insights into palladium-mediated polymerization of para-N, N-disubstituted aminostyrene. Dalton Trans 2023; 52:17573-17582. [PMID: 37966170 DOI: 10.1039/d3dt03146b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Experimental and theoretical insights into polymerization of para-N,N-disubstituted aminostyrene monomers (St-4-NR2, R = Me, Et, Ph) using cationic α-diimine palladium complexes have been initially reported. The effects of the catalyst structure and monomer substituent were studied systematically. Polymerization turnover frequency (TOF) was shown to decrease in the order of monomer substituents Me > Et > Ph, whereas the molecular weight of the produced polymers showed an opposite trend (Me < Et < Ph). Methanol-mediated polymerization of para-N,N-dimethylaminostyrene (DMAS), along with polymer chain-end analysis, and palladium intermediate isolation proved that palladium-initiated DMAS polymerization obeyed a cationic mechanism. Comprehensive theoretical calculations further revealed that the carbocation was generated from the insertion of DMAS into the palladium center rather than the polarization of the methyl palladium intermediate with a coordinated DMAS. The produced amine-functionalized amorphous polystyrenes have low stereoregularity and exhibit good hydrophilic properties. The poly(para-N,N-disphenylaminostyrene) is a luminescent polymer and shows fluorescence properties, rendering this material a promising candidate for versatile potential applications.
Collapse
Affiliation(s)
- Chi Shing Cheung
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zonglin Qiu
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | - Donghui Li
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | - Huiyun Deng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | - Handou Zheng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
2
|
Takagi K, Murakata H, Hasegawa T. Application of Thiourea/Halogen Bond Donor Cocatalysis in Metal-Free Cationic Polymerization of Isobutyl Vinyl Ether and Styrene Derivatives. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Koji Takagi
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Hiroto Murakata
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Tomoki Hasegawa
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| |
Collapse
|
3
|
Takagi K, Sakakibara N, Hasegawa T, Hayashi S. Controlled/Living Cationic Polymerization of p-Methoxystyrene Using Tellurium-Based Chalcogen Bonding Catalyst─Discovery of a New Water-Tolerant Lewis Acid Catalyst. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koji Takagi
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Nao Sakakibara
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Tomoki Hasegawa
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Shuhei Hayashi
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| |
Collapse
|
4
|
|
5
|
Shankel S, Lambert T, Fors B. Moisture tolerant cationic RAFT polymerization of vinyl ethers. Polym Chem 2022. [DOI: 10.1039/d2py00780k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic reversible addition—fragmentation chain transfer (RAFT) polymerizations have permitted the controlled polymerization of vinyl ethers and select styrenics with predictable molar masses and easily modified thiocarbonylthio chain ends. However, most...
Collapse
|
6
|
Destephen A, González de San Román E, Ballard N. The influence of thiocarbonylthio compounds on the B(C 6F 5) 3 catalyzed cationic polymerization of styrene. Polym Chem 2022. [DOI: 10.1039/d2py00016d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When applied to the cationic polymerization of styrene, thiocarbonylthio compounds can lead to a dual control mechanism, where degenerative chain transfer occurs concurrent with a reversible addition mechanism.
Collapse
Affiliation(s)
- Aurélie Destephen
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Estibaliz González de San Román
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Nicholas Ballard
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
7
|
Knutson PC, Teator AJ, Varner TP, Kozuszek CT, Jacky PE, Leibfarth FA. Brønsted Acid Catalyzed Stereoselective Polymerization of Vinyl Ethers. J Am Chem Soc 2021; 143:16388-16393. [PMID: 34597508 DOI: 10.1021/jacs.1c08282] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Isotactic poly(vinyl ether)s (PVEs) have recently been identified as a new class of semicrystalline thermoplastics with a valuable combination of mechanical and interfacial properties. Currently, methods to synthesize isotactic PVEs are limited to strong Lewis acids that require a high catalyst loading and limit the accessible scope of monomer substrates for polymerization. Here, we demonstrate the first Brønsted acid catalyzed stereoselective polymerization of vinyl ethers. A single-component imidodiphosphorimidate catalyst exhibits a sufficiently low pKa to initiate vinyl ether polymerization and acts as a chiral conjugate base to direct the stereochemistry of monomer addition to the oxocarbenium ion reactive chain end. This Brønsted acid catalyzed stereoselective polymerization enabled an expanded substrate scope compared to previous methods, the use of chain transfer agents to lower catalyst loading, and the capability to recycle the catalyst for multiple polymerizations.
Collapse
Affiliation(s)
- Phil C Knutson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron J Teator
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Travis P Varner
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Caleb T Kozuszek
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paige E Jacky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Kottisch V, Jermaks J, Mak JY, Woltornist RA, Lambert TH, Fors BP. Hydrogen Bond Donor Catalyzed Cationic Polymerization of Vinyl Ethers. Angew Chem Int Ed Engl 2021; 60:4535-4539. [PMID: 33137229 PMCID: PMC8145790 DOI: 10.1002/anie.202013419] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/20/2022]
Abstract
The synthesis of high-molecular-weight poly(vinyl ethers) under mild conditions is a significant challenge, since cationic polymerization reactions are highly sensitive to chain-transfer and termination events. We identified a novel and highly effective hydrogen bond donor (HBD)-organic acid pair that can facilitate controlled cationic polymerization of vinyl ethers under ambient conditions with excellent monomer compatibility. Poly(vinyl ethers) of molar masses exceeding 50 kg mol-1 can be produced within 1 h without elaborate reagent purification. Modification of the HBD structure allowed tuning of the polymerization rate, while DFT calculations helped elucidate crucial intermolecular interactions between the HBD, organic acid, and polymer chain end.
Collapse
Affiliation(s)
- Veronika Kottisch
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| | - Janis Jermaks
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| | - Joe-Yee Mak
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| | - Ryan A Woltornist
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| | - Brett P Fors
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
9
|
Das Karmakar P, Shukla A, Maiti P, Chatterjee S, Pal S. Reversible addition fragmentation chain transfer‐mediated bioconjugated amphiphilic graft‐block copolymer using dextran, poly (
N
‐isopropylacrylamide), and poly (vinyl acetate). J Appl Polym Sci 2020. [DOI: 10.1002/app.50381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Puja Das Karmakar
- Department of Chemistry Indian Institute of Technology (ISM) Dhanbad Dhanbad Jharkhand India
| | - Aparna Shukla
- School of Materials Science and Engineering Indian Institute of Technology (BHU) Varanasi Varanasi Uttar Pradesh India
| | - Pralay Maiti
- School of Materials Science and Engineering Indian Institute of Technology (BHU) Varanasi Varanasi Uttar Pradesh India
| | - Soumit Chatterjee
- Department of Chemistry Indian Institute of Technology (ISM) Dhanbad Dhanbad Jharkhand India
| | - Sagar Pal
- Department of Chemistry Indian Institute of Technology (ISM) Dhanbad Dhanbad Jharkhand India
| |
Collapse
|
10
|
Kottisch V, Jermaks J, Mak J, Woltornist RA, Lambert TH, Fors BP. Hydrogen Bond Donor Catalyzed Cationic Polymerization of Vinyl Ethers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Veronika Kottisch
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| | - Janis Jermaks
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| | - Joe‐Yee Mak
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| | - Ryan A. Woltornist
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| | - Tristan H. Lambert
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| | - Brett P. Fors
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| |
Collapse
|
11
|
Hotta D, Kanazawa A, Aoshima S. tert-Butyl Esters as Potential Reversible Chain Transfer Agents for Concurrent Cationic Vinyl-Addition and Ring-Opening Copolymerization of Vinyl Ethers and Oxiranes. Macromol Rapid Commun 2020; 42:e2000479. [PMID: 33200479 DOI: 10.1002/marc.202000479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Indexed: 11/10/2022]
Abstract
tert-Butyl esters are demonstrated to function as chain transfer agents (CTAs) in the cationic copolymerization of vinyl ether (VE) and oxirane via concurrent vinyl-addition and ring-opening mechanisms. In the copolymerization of isopropyl VE and isobutylene oxide (IBO), the IBO-derived propagating species reacts with tert-butyl acetate to generate a copolymer chain with an acetoxy group at the ω-end. This reaction liberates a tert-butyl cation; hence, a polymer chain with a tert-butyl group at the α-end is subsequently generated. Other tert-butyl esters also function as CTAs, and the substituent attached to the carbonyl group affects the chain transfer efficiency. In addition, ethyl acetate does not function as a CTA, which suggests the importance of the liberation of a tert-butyl cation for the chain transfer process. Chain transfer reactions by tert-butyl esters potentially occur reversibly through the reaction of the propagating cation with the ester group at the ω-end of another chain.
Collapse
Affiliation(s)
- Daisuke Hotta
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
12
|
Boeck PT, Tanaka J, Liu S, You W. Importance of Nucleophilicity of Chain-Transfer Agents for Controlled Cationic Degenerative Chain-Transfer Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Parker Thomas Boeck
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joji Tanaka
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shubin Liu
- Research Computing Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
13
|
Teator AJ, Varner TP, Jacky PE, Sheyko KA, Leibfarth FA. Polar Thermoplastics with Tunable Physical Properties Enabled by the Stereoselective Copolymerization of Vinyl Ethers. ACS Macro Lett 2019; 8:1559-1563. [PMID: 35619395 DOI: 10.1021/acsmacrolett.9b00802] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of isotactic, semicrystalline vinyl ether copolymers (up to 94% meso diads) were synthesized using a chiral BINOL-based phosphoric acid in combination with a titanium Lewis acid. This stereoselective cationic polymerization enabled the systematic tuning of both glass transition (Tg) and melting temperature (Tm) in copolymers derived from alkyl vinyl ethers (i.e., ethyl, butyl, isobutyl). Additionally, a vinyl ether comonomer bearing an acyl-protected alcohol was utilized as a platform for postfunctionalization. Copolymers containing the masked alcohols were shown to undergo deprotection and subsequent coupling with a desired acid chloride. Collectively, these results highlight the diverse material properties and expanded chemical space accessible through stereoselective cationic polymerization mediated by a chiral anion.
Collapse
Affiliation(s)
- Aaron J. Teator
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Travis P. Varner
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paige E. Jacky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Karolina A. Sheyko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Frank A. Leibfarth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|