1
|
Shi N, Yang B, Li J, Cai W, Xu L, Tao Y, Kong Y. Synthesis of chiral hollow polymer microspheres and their applications in the spectroscopic chiral discrimination of tryptophan isomers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125302. [PMID: 39447301 DOI: 10.1016/j.saa.2024.125302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Hollow polymer microspheres (HPMs) were synthesized, which were then hydrolyzed in aqueous ammonia to produce carboxyl (-COOH) groups on their surface. L-phenylalanine (L-Phe) was grafted to the hydrolyzed HPMs (H-HPMs) through amidation reactions, endowing the H-HPMs with chirality. The resultant chiral HPMs (C-HPMs) were used for the chiral discrimination of tryptophan (Trp) isomers. Due to the same rotatorydirection of L-Phe and L-Trp, the C-HPMs showed greatly higher selectivity toward L-Trp than its isomer. After being adsorbed by the C-HPMs, the absorbance of the residual L-Trp is significantly lower than that of the residual D-Trp, and thus spectroscopic chiral discrimination of the Trp isomers was successfully achieved. The Trp isomers were also discriminated by the chiral solid polymer microspheres (C-SPMs), while the difference in the absorbance of the residual L-Trp and D-Trp is remarkably smaller than that obtained by the C-HPMs. The outstanding discrimination capability of the C-HPMs might be ascribed to their high surface permeability resulted from their unique hollow structure.
Collapse
Affiliation(s)
- Nan Shi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Baozhu Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Laidi Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Núñez-Martínez M, Fernández-Míguez M, Quiñoá E, Freire F. Size Control of Chiral Nanospheres Obtained via Nanoprecipitation of Helical Poly(phenylacetylene)s in the Absence of Surfactants. Angew Chem Int Ed Engl 2024; 63:e202403313. [PMID: 38742679 DOI: 10.1002/anie.202403313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Nanostructuration of dynamic helical polymers such as poly(phenylacetylene)s (PPAs) depends on the secondary structure adopted by the polymer and the functional group used to connect the chiral pendant to the PPA backbone. Thus, while PPAs with dynamic and flexible scaffolds (para- and meta-substituted, ω1<165°) generate by nanoprecipitation low polydisperse nanospheres with controllable size at different acetone/water mixtures, those with a quasi-static behavior and the presence of an extended, almost planar structure (ortho-substituted, ω1>165°), aggregate into a mixture of spherical and oval nanostructures whose size is not controlled. Photostability studies show that poly(phenylacetylene) particles are more stable to light irradiation than when dissolved macromolecularly. Moreover, the photostability of the particle depends on the secondary structure of the PPA and its screw sense excess. This fact, in combination with the encapsulation ability of these polymer particles, allows the creation of light stimuli-responsive nanocarriers, whose cargo can be delivered by light irradiation.
Collapse
Affiliation(s)
- Manuel Núñez-Martínez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Manuel Fernández-Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Li M, Zhang L, Wu B, Hong M. High-Enantioselectivity Adsorption Separation of Racemic Mandelic Acid and Methyl Mandelate by Robust Chiral UiO-68-Type Zr-MOFs. Inorg Chem 2024; 63:381-389. [PMID: 38150656 DOI: 10.1021/acs.inorgchem.3c03277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Mandelic acid and its analogues are highly valuable medical intermediates and play an important role in the pharmaceutical industry, biochemistry, and life sciences. Therefore, effective enantioselective recognition and separation of mandelic acid are of great significance. In this study, two of our recently reported chiral amine-alcohol-functionalized UiO-68-type Zr-HMOFs 1 and 3 with high chemical stability, abundant binding sites, and large chiral pores were selected as chiral selectors for the enantioselective separation of mandelic acid (MA), methyl mandelate (MM), and other chiral molecules containing only one phenyl. Materials 1 and 3 exhibited excellent enantioselective separation performance for MA and MM. Especially for the separation of racemate MA, the enantiomeric excess values reached 97.3 and 98.9%, which are the highest reported values so far. Experimental and density functional theory (DFT) computational results demonstrated that the introduction of additional phenyls on the chiral amine alcohol pendants in 3 had somewhat impact on the enantioselective adsorption and separation of MA or MM compared with 1, but it was not significant. Further research on the enantioselective separation of those chiral adsorbates containing only one phenyl by material 1 indicated the crucial role of the groups directly bonded to the chiral carbons of the adsorbates in the selective separation of enantiomers, especially showing higher enantioselectivity for the adsorbates with two hydrogen-bonding groups directly bonded to its chiral carbon.
Collapse
Affiliation(s)
- Mengna Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lei Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Benlai Wu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of the Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| |
Collapse
|
4
|
Zhong H, Deng J. Organic Polymer-Constructed Chiral Particles: Preparation and Chiral Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2033764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
5
|
Liu X, Moradi MA, Bus T, Heuts JPA, Debije MG, Schenning APHJ. Monodisperse Liquid Crystalline Polymer Shells with Programmable Alignment and Shape Prepared by Seeded Dispersion Polymerization. Macromolecules 2021; 54:6052-6060. [PMID: 34276068 PMCID: PMC8280615 DOI: 10.1021/acs.macromol.1c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/04/2021] [Indexed: 11/30/2022]
Abstract
![]()
Monodisperse,
micrometer-sized liquid crystalline (LC) shells are
prepared by seeded dispersion polymerization. After polymerizing LC
monomer mixtures in the presence of non-crosslinked polymer seeds,
hollow LC polymer shells with programmable alignment and shape are
prepared by removing the seeds. The LC alignment in the LC polymer
shells can be easily manipulated by the polymer seeds, as a radial
alignment is observed with amorphous poly(phenyl methacrylate) seeds
and a bipolar alignment is observed with bipolar LC polymer seeds.
After removal of the seeds, the radially aligned samples give radially
aligned shells with small dimples. The resulting bipolar LC polymer
shells collapse into a biconcave shape. Polarized optical microscopy
and transmission electron microscopy indicate that the collapse occurs
at the defect points in the shell. In the case of a lower crosslink
density, LC polymer hollow shells with larger dimples are obtained,
resulting in cup-shaped polymer particles. Biconcave LC polymer shells
based on other LC mixtures have also been prepared, showing the versatility
of the seeded dispersion polymerization method.
Collapse
Affiliation(s)
- Xiaohong Liu
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Mohammad-Amin Moradi
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tom Bus
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Johan P A Heuts
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.,Supramolecular Polymer Chemistry Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Michael G Debije
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Albert P H J Schenning
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
6
|
Yang J, Li P, Zhao B, Pan K, Deng J. Electrospinning chiral fluorescent nanofibers from helical polyacetylene: preparation and enantioselective recognition ability. NANOSCALE ADVANCES 2020; 2:1301-1308. [PMID: 36133051 PMCID: PMC9418719 DOI: 10.1039/d0na00127a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/20/2020] [Indexed: 05/12/2023]
Abstract
Chirality is ubiquitous in nature and closely related to the pharmacological effects of chiral drugs. Therefore, chiral recognition of molecular enantiomers becomes an important research theme. Fluorescence detection is highly sensitive and fast but has achieved only limited success in enantiomeric detection due to the lack of powerful chiral fluorescence detection materials. In this paper, a novel chiral fluorescent probe material, i.e. a chiral fluorescent nanofiber membrane, is prepared from chiral helical substituted polyacetylene by the electrospinning technique. The SEM images demonstrate the success in fabricating continuous, uniform nanofibers with a diameter of about 100 nm. Circular dichroism spectra show that the nanofibers exhibit fascinating optical activity. One of the enantiomeric chiral fluorescent membranes has chiral fluorescence recognition effects towards alanine and chiral phenylethylamine, while the other enantiomeric membrane does not. The prepared chiral fluorescent nano-materials are expected to find various applications in chirality-related fields due to their advantages such as chirality, fluorescence, and a high specific surface area. The established preparation approach also promises a potent and versatile platform for developing advanced nanofiber materials from conjugated polymers.
Collapse
Affiliation(s)
- Jiali Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Pengpeng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Biao Zhao
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Kai Pan
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
- College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
7
|
|
8
|
Wang C, Sun J, Tao Y, Fang L, Zhou J, Dai M, Liu M, Fang Q. Biomass materials derived from anethole: conversion and application. Polym Chem 2020. [DOI: 10.1039/c9py01513b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Renewable biomass has attracted much attention because of its advantages over fossil fuels. Of these biomasses, anethole has been developed as a reliable monomer or precursor for diverse materials with potential applications.
Collapse
Affiliation(s)
- Caiyun Wang
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
| | - Jing Sun
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Yangqing Tao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Linxuan Fang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Junfeng Zhou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Menglu Dai
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Meina Liu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Qiang Fang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|