1
|
Yu S, Reddy O, Abaci A, Ai Y, Li Y, Chen H, Guvendiren M, Belfield KD, Zhang Y. Novel BODIPY-Based Photobase Generators for Photoinduced Polymerization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45281-45289. [PMID: 37708358 DOI: 10.1021/acsami.3c09326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Photobase generators (PBGs) are compounds that utilize light-sensitive chemical-protecting groups to offer spatiotemporal control of releasing organic bases upon targeted light irradiation. PBGs can be implemented as an external control to initiate anionic polymerizations such as thiol-ene Michael addition reactions. However, there are limitations for common PBGs, including a short absorption wavelength and weak base release that lead to poor efficiency in photopolymerization. Therefore, there is a great need for visible-light-triggered PBGs that are capable of releasing strong bases efficiently. Here, we report two novel BODIPY-based visible-light-sensitive PBGs for light-induced activation of the thiol-ene Michael "click" reaction and polymerization. These PBGs were designed by connecting the BODIPY-based light-sensitive protecting group with tetramethylguanidine (TMG), a strong base. Moreover, we exploited the heavy atom effect to increase the efficiency of releasing TMG and the polymerization rate. These BODIPY-based PBGs exhibit extraordinary activity toward thiol-ene Michael addition-based polymerization, and they can be used in surface coating and polymer network formation of different thiol and vinyl monomers.
Collapse
Affiliation(s)
- Shupei Yu
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Ojasvita Reddy
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Alperen Abaci
- . . Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 161 Warren Street, Newark, New Jersey 07102, United States
| | - Yongling Ai
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Yanmei Li
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Hao Chen
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Murat Guvendiren
- . . Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 161 Warren Street, Newark, New Jersey 07102, United States
| | - Kevin D Belfield
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Yuanwei Zhang
- . . Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Advanced Formulations Based on Poly(ionic liquid) Materials for Additive Manufacturing. Polymers (Basel) 2022; 14:polym14235121. [PMID: 36501514 PMCID: PMC9735564 DOI: 10.3390/polym14235121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Innovation in materials specially formulated for additive manufacturing is of great interest and can generate new opportunities for designing cost-effective smart materials for next-generation devices and engineering applications. Nevertheless, advanced molecular and nanostructured systems are frequently not possible to integrate into 3D printable materials, thus limiting their technological transferability. In some cases, this challenge can be overcome using polymeric macromolecules of ionic nature, such as polymeric ionic liquids (PILs). Due to their tuneability, wide variety in molecular composition, and macromolecular architecture, they show a remarkable ability to stabilize molecular and nanostructured materials. The technology resulting from 3D-printable PIL-based formulations represents an untapped array of potential applications, including optoelectronic, antimicrobial, catalysis, photoactive, conductive, and redox applications.
Collapse
|
3
|
Kass LE, Nguyen J. Nanocarrier-hydrogel composite delivery systems for precision drug release. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1756. [PMID: 34532989 PMCID: PMC9811486 DOI: 10.1002/wnan.1756] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 01/07/2023]
Abstract
Hydrogels are a class of biomaterials widely implemented in medical applications due to their biocompatibility and biodegradability. Despite the many successes of hydrogel-based delivery systems, there remain challenges to hydrogel drug delivery such as a burst release at the time of administration, a limited ability to encapsulate certain types of drugs (i.e., hydrophobic drugs, proteins, antibodies, and nucleic acids), and poor tunability of geometry and shape for controlled drug release. This review discusses two main important advances in hydrogel fabrication for precision drug release: first, the incorporation of nanocarriers to diversify their drug loading capability, and second, the design of hydrogels using 3D printing to precisely control drug dosing and release kinetics via high-resolution structures and geometries. We also outline ongoing challenges and discuss opportunities to further optimize drug release from hydrogels for personalized medicine. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Juliane Nguyen
- Corresponding author: Juliane Nguyen, Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA,
| |
Collapse
|
4
|
Jiang Z, Diggle B, Tan ML, Viktorova J, Bennett CW, Connal LA. Extrusion 3D Printing of Polymeric Materials with Advanced Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001379. [PMID: 32999820 PMCID: PMC7507554 DOI: 10.1002/advs.202001379] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Indexed: 05/24/2023]
Abstract
3D printing is a rapidly growing technology that has an enormous potential to impact a wide range of industries such as engineering, art, education, medicine, and aerospace. The flexibility in design provided by this technique offers many opportunities for manufacturing sophisticated 3D devices. The most widely utilized method is an extrusion-based solid-freeform fabrication approach, which is an extremely attractive additive manufacturing technology in both academic and industrial research communities. This method is versatile, with the ability to print a range of dimensions, multimaterial, and multifunctional 3D structures. It is also a very affordable technique in prototyping. However, the lack of variety in printable polymers with advanced material properties becomes the main bottleneck in further development of this technology. Herein, a comprehensive review is provided, focusing on material design strategies to achieve or enhance the 3D printability of a range of polymers including thermoplastics, thermosets, hydrogels, and other polymers by extrusion techniques. Moreover, diverse advanced properties exhibited by such printed polymers, such as mechanical strength, conductance, self-healing, as well as other integrated properties are highlighted. Lastly, the stimuli responsiveness of the 3D printed polymeric materials including shape morphing, degradability, and color changing is also discussed.
Collapse
Affiliation(s)
- Zhen Jiang
- Research School of ChemistryAustralian National UniversityCanberraACT2601Australia
| | - Broden Diggle
- Research School of ChemistryAustralian National UniversityCanberraACT2601Australia
| | - Ming Li Tan
- Research School of ChemistryAustralian National UniversityCanberraACT2601Australia
| | - Jekaterina Viktorova
- Research School of ChemistryAustralian National UniversityCanberraACT2601Australia
| | | | - Luke A. Connal
- Research School of ChemistryAustralian National UniversityCanberraACT2601Australia
| |
Collapse
|
5
|
Bhattacharya S, Shunmugam R. Polymer based gels and their applications in remediation of dyes from textile effluents. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1782229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sayantani Bhattacharya
- Polymer Research Centre, Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Raja Shunmugam
- Polymer Research Centre, Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| |
Collapse
|
6
|
Abstract
Shear-thinning hydrogels that utilize thiol-Michael chain-extension and free radical polymerization have a tunable stretchability.
Collapse
Affiliation(s)
- Dylan Karis
- Department of Chemistry
- University of Washington
- Seattle
- USA
| | | |
Collapse
|
7
|
Yuan T, Zhang L, Li T, Tu R, Sodano HA. 3D Printing of a self-healing, high strength, and reprocessable thermoset. Polym Chem 2020. [DOI: 10.1039/d0py00819b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A furan-maleimide based 3D printing ink for the fabrication of a self-healing and high strength thermoset with recycling potential.
Collapse
Affiliation(s)
- Tianyu Yuan
- Department of Macromolecular Science and Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Lisha Zhang
- Department of Macromolecular Science and Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Tony Li
- Department of Aerospace Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Ruowen Tu
- Department of Aerospace Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Henry A. Sodano
- Department of Macromolecular Science and Engineering
- University of Michigan
- Ann Arbor
- USA
- Department of Aerospace Engineering
| |
Collapse
|