1
|
Lang C, Lloyd EC, Matuszewski KE, Xu Y, Ganesan V, Huang R, Kumar M, Hickey RJ. Nanostructured block copolymer muscles. NATURE NANOTECHNOLOGY 2022; 17:752-758. [PMID: 35654867 DOI: 10.1038/s41565-022-01133-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/02/2022] [Indexed: 06/15/2023]
Abstract
High-performance actuating materials are necessary for advances in robotics, prosthetics and smart clothing. Here we report a class of fibre actuators that combine solution-phase block copolymer self-assembly and strain-programmed crystallization. The actuators consist of highly aligned nanoscale structures with alternating crystalline and amorphous domains, resembling the ordered and striated pattern of mammalian skeletal muscle. The reported nanostructured block copolymer muscles excel in several aspects compared with current actuators, including efficiency (75.5%), actuation strain (80%) and mechanical properties (for example, strain-at-break of up to 900% and toughness of up to 121.2 MJ m-3). The fibres exhibit on/off rotary actuation with a peak rotational speed of 450 r.p.m. Furthermore, the reported fibres demonstrate multi-trigger actuation (heat and hydration), offering switchable mechanical properties and various operating modes. The versatility and recyclability of the polymer fibres, combined with the facile fabrication method, opens new avenues for creating multifunctional and recyclable actuators using block copolymers.
Collapse
Affiliation(s)
- Chao Lang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China
| | - Elisabeth C Lloyd
- Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Kelly E Matuszewski
- Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Yifan Xu
- Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Rui Huang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Robert J Hickey
- Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
2
|
Blosch SE, Scannelli SJ, Alaboalirat M, Matson JB. Complex Polymer Architectures Using Ring-Opening Metathesis Polymerization: Synthesis, Applications, and Practical Considerations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sarah E. Blosch
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samantha J. Scannelli
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mohammed Alaboalirat
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B. Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Li W, Zhang H, Zhai Z, Huang X, Shang S, Song Z. Photo-controlled self-assembly behavior of novel amphiphilic polymers with a rosin-based azobenzene group. NEW J CHEM 2022. [DOI: 10.1039/d1nj04575j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel ‘bola’ rosin-based photo-responsive amphiphilic polymers PMPn show an extremely high photoresponsive efficiency and various assembly morphological changes.
Collapse
Affiliation(s)
- Wanbing Li
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| | - Zhaolan Zhai
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| | - Xujuan Huang
- School of Chemical and Chemistry, Yancheng Institute of Technology, Yancheng 210042, Jiangsu Province, P. R. China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, P. R. China
| |
Collapse
|
4
|
Lang C, Kumar M, Hickey RJ. Current status and future directions of self-assembled block copolymer membranes for molecular separations. SOFT MATTER 2021; 17:10405-10415. [PMID: 34768280 DOI: 10.1039/d1sm01368h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the most efficient and promising separation alternatives to thermal methods such as distillation is the use of polymeric membranes that separate mixtures based on molecular size or chemical affinity. Self-assembled block copolymer membranes have gained considerable attention within the membrane field due to precise control over nanoscale structure, pore size, and chemical versatility. Despite the rapid progress and excitement, a significant hurdle in using block copolymer membranes for nanometer and sub-nanometer separations such as nanofiltration and reverse osmosis is the lower limit on domain size features. Strategies such as polymer post-functionalization, self-assembly of oligomers, liquid crystals, and random copolymers, or incorporation of artificial/natural channels within block copolymer materials are future directions with the potential to overcome current limitations with respect to separation size.
Collapse
Affiliation(s)
- Chao Lang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16801, USA.
| | - Manish Kumar
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Robert J Hickey
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16801, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania, 16801, USA
| |
Collapse
|
5
|
|
6
|
LaNasa JA, Hickey RJ. Surface-Initiated Ring-Opening Metathesis Polymerization: A Method for Synthesizing Polymer-Functionalized Nanoparticles Exhibiting Semicrystalline Properties and Diverse Macromolecular Architectures. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jacob A. LaNasa
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Robert J. Hickey
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| |
Collapse
|
7
|
Zofchak ES, LaNasa JA, Torres VM, Hickey RJ. Deciphering the Complex Phase Behavior during Polymerization-Induced Nanostructural Transitions of a Block Polymer/Monomer Blend. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|