1
|
Herman RA, Ayepa E, Zhang WX, Li ZN, Zhu X, Ackah M, Yuan SS, You S, Wang J. Molecular modification and biotechnological applications of microbial aspartic proteases. Crit Rev Biotechnol 2024; 44:388-413. [PMID: 36842994 DOI: 10.1080/07388551.2023.2171850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 02/28/2023]
Abstract
The growing preference for incorporating microbial aspartic proteases in industries is due to their high catalytic function and high degree of substrate selectivity. These properties, however, are attributable to molecular alterations in their structure and a variety of other characteristics. Molecular tools, functional genomics, and genome editing technologies coupled with other biotechnological approaches have aided in improving the potential of industrially important microbial proteases by addressing some of their major limitations, such as: low catalytic efficiency, low conversion rates, low thermostability, and less enzyme yield. However, the native folding within their full domain is dependent on a surrounding structure which challenges their functionality in substrate conversion, mainly due to their mutual interactions in the context of complex systems. Hence, manipulating their structure and controlling their expression systems could potentially produce enzymes with high selectivity and catalytic functions. The proteins produced by microbial aspartic proteases are industrially capable and far-reaching in regulating certain harmful distinctive industrial processes and the benefits of being eco-friendly. This review provides: an update on current trends and gaps in microbial protease biotechnology, exploring the relevant recombinant strategies and molecular technologies widely used in expression platforms for engineering microbial aspartic proteases, as well as their potential industrial and biotechnological applications.
Collapse
Affiliation(s)
- Richard Ansah Herman
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, Kusi, Ghana
| | - Wen-Xin Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Zong-Nan Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuang-Shuang Yuan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| |
Collapse
|
2
|
Edson CB, Liu M, Totsingan F, O’Berg E, Salvucci J, Dao U, Khare SD, Gross RA. Monomer Choice Influences N-Acryloyl Amino Acid Grafter Conversion via Protease Catalysis. Biomacromolecules 2023; 24:1798-1809. [PMID: 36996092 PMCID: PMC10139737 DOI: 10.1021/acs.biomac.3c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
End-capped peptides modified with reactive functional groups on the N-terminus provide a route to prepare peptide-polymer conjugates for a broad range of applications. Unfortunately, current chemical methods to construct modified peptides rely largely on solid-phase peptide synthesis (SPPS), which lacks green preparative characteristics and is costly, thus limiting its applicability to specialty applications such as regenerative medicine. This work evaluates N-terminally modified N-acryloyl-glutamic acid diethyl ester, N-acryloyl-leucine ethyl ester, and N-acryloyl-alanine ethyl ester as grafters and papain as the protease for the direct addition of amino acid ethyl ester (AA-OEt) monomers via protease-catalyzed peptide synthesis (PCPS) and the corresponding formation of N-acryloyl-functionalized oligopeptides in a one-pot aqueous reaction. It was hypothesized that by building N-acryloyl grafters from AA-OEt monomers that are known to be good substrates for papain in PCPS, the corresponding grafters would yield high grafter conversions, high ratio of grafter-oligopeptide to free NH2-oligopeptide, and high overall yield. However, this work demonstrates based on the grafter/monomers studied herein that the dominant factor in N-acryloyl-AA-OEt grafter conversion is the co-monomer used in co-oligomerizations. Computational modeling using Rosetta qualitatively recapitulates the results and provides insight into the structural and energetic bases underlying substrate selectivity. The findings herein expand our knowledge of factors that determine the efficiency of preparing N-acryloyl-terminated oligopeptides by PCPS that could provide practical routes to peptide macromers for conjugation to polymers and surfaces for a broad range of applications.
Collapse
Affiliation(s)
- Cody B. Edson
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - Melinda Liu
- Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Filbert Totsingan
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - Evan O’Berg
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - John Salvucci
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - Uyen Dao
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - Sagar D. Khare
- Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Richard A. Gross
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| |
Collapse
|
3
|
Protease-catalyzed synthesis of α-poly-L-Lysine and amphiphilic poly(L-lysine-co-L-phenylalanine) in a neat non-toxic organic solvent. Bioprocess Biosyst Eng 2023; 46:515-522. [PMID: 36539643 DOI: 10.1007/s00449-022-02836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Subtilisin Carlsberg (alkaline protease from Bacillus licheniformis) catalyzes the syntheses of high molecular weights (ca. 20 KDa) cationic α-poly-L-lysine and amphiphilic poly(α-L-lysine-co-L-phenylalanine) in neat organic solvent. The synthesis is conducted in liquid 1,1,1,2-tetrafluoroethane solvent, which is a hydrophobic non-toxic gas that does not deplete the ozone layer and approved for pharmaceutical applications. Solubility of substrates and adequate protease activity in this system with low water environment limits the reaction of hydrolysis of the growing peptide chains. The pressurization of this organic compressed fluid to liquid has low-pressure requirements (25 bar, 40 ºC), and its complete evaporation at atmospheric pressure after completing the reaction ensures solvent-free residues in products. The resulting polypeptides present null cytotoxicity according to MTT and NR analyses, as well as Calcein/EthD-1 assay in human cells.
Collapse
|
4
|
Wang Z, Gu X, Li B, Li J, Wang F, Sun J, Zhang H, Liu K, Guo W. Molecularly Engineered Protein Glues with Superior Adhesion Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204590. [PMID: 36006846 DOI: 10.1002/adma.202204590] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Naturally inspired proteins are investigated for the development of bioglues that combine adhesion performance and biocompatibility for biomedical applications. However, engineering such adhesives by rational design of the proteins at the molecular level is rarely reported. Herein, it is shown that a new generation of protein-based glues is generated by supramolecular assembly through de novo designed structural proteins in which arginine triggers robust liquid-liquid phase separation. The encoded arginine moieties significantly strengthen multiple molecular interactions in the complex, leading to ultrastrong adhesion on various surfaces, outperforming many chemically reacted and biomimetic glues. Such adhesive materials enable quick visceral hemostasis in 10 s and outstanding tissue regeneration due to their robust adhesion, good biocompatibility, and superior antibacterial capacity. Remarkably, their minimum inhibitory concentrations are orders of magnitude lower than clinical antibiotics. These advances offer insights into molecular engineering of de novo designed protein glues and outline a general strategy to fabricate mechanically strong protein-based materials for surgical applications.
Collapse
Affiliation(s)
- Zili Wang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xinquan Gu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200062, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Weisheng Guo
- State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| |
Collapse
|
5
|
Chan NJ, Lentz S, Gurr PA, Scheibel T, Qiao GG. Mimicry of silk utilizing synthetic polypeptides. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Watanabe T, Terada K, Takemura S, Masunaga H, Tsuchiya K, Lamprou A, Numata K. Chemoenzymatic Polymerization of l-Serine Ethyl Ester in Aqueous Media without Side-Group Protection. ACS POLYMERS AU 2022; 2:147-156. [PMID: 36855524 PMCID: PMC9954318 DOI: 10.1021/acspolymersau.1c00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Poly(l-serine) (polySer) has tremendous potential as a polypeptide-based functional material due to the utility of the hydroxyl group on its side chain; however, tedious protection/deprotection of the hydroxyl groups is required for its synthesis. In this study, polySer was synthesized by the chemoenzymatic polymerization (CEP) of l-serine ethyl ester (Ser-OEt) or l-serine methyl ester (Ser-OMe) using papain as a catalyst in an aqueous medium. The CEP of Ser-OEt proceeded at basic pH ranging from 7.5 to 9.5 and resulted in the maximum precipitate yield of polySer at an optimized pH of 8.5. A series of peaks detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry revealed that the formed precipitate consisted of polySer with a degree of polymerization ranging from 5 to 22. Moreover, infrared spectroscopy, circular dichroism spectroscopy, and synchrotron wide-angle X-ray diffraction measurements indicated that the obtained polySer formed a β-sheet/strand structure. This is the first time the synthesis of polySer was realized by CEP in aqueous solution without protecting the hydroxyl group of the Ser monomer.
Collapse
Affiliation(s)
- Takumi Watanabe
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kayo Terada
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shogo Takemura
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyasu Masunaga
- Japan
Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kousuke Tsuchiya
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan,Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,
| | - Alexandros Lamprou
- Innovation
Campus Asia Pacific (Shanghai), BASF Advanced
Chemicals Co., Ltd., No 300, Jiangxinsha Road, Pudong, Shanghai 200137, P.R. China
| | - Keiji Numata
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan,Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,
| |
Collapse
|
7
|
Romero-Montero A, Aguirre-Díaz IS, Puiggalí J, del Valle LJ, Gimeno M. Self-assembly of supramolecular chemoenzymatic poly- l-phenylalanine. Polym Chem 2021. [DOI: 10.1039/d0py01659d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The self-assembly behavior of chemoenzymatic high molecular weight (ca. 30 000 Da) poly-l-phenylalanine (ePLP) and the nano-morphologies thereof are investigated.
Collapse
Affiliation(s)
- Alejandra Romero-Montero
- Depto. de Alimentos y Biotecnología
- Facultad de Química
- Universidad Nacional Autónoma de México
- 04510 CDMX
- Mexico
| | - Isabel S. Aguirre-Díaz
- Depto. de Alimentos y Biotecnología
- Facultad de Química
- Universidad Nacional Autónoma de México
- 04510 CDMX
- Mexico
| | - Jordi Puiggalí
- Chemical Engineering Department
- Escola d'Enginyeria de Barcelona Est-EEBE
- 08019 Barcelona
- Spain
- Institute for Bioengineering of Catalonia (IBEC)
| | - Luis J. del Valle
- Chemical Engineering Department
- Escola d'Enginyeria de Barcelona Est-EEBE
- 08019 Barcelona
- Spain
| | - Miquel Gimeno
- Depto. de Alimentos y Biotecnología
- Facultad de Química
- Universidad Nacional Autónoma de México
- 04510 CDMX
- Mexico
| |
Collapse
|