1
|
Salaeh S, Nobnop S, Thongnuanchan B, Das A, Wießner S. Thermo-responsive programmable shape memory polymer based on amidation cured natural rubber grafted with poly(methyl methacrylate). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Liu Z, Ma Y, Zhang Z, Shi Z, Gao J. Rapid Stress Relaxation, Multistimuli-Responsive Elastomer Based on Dual-Dynamic Covalent Bonds and Aniline Trimer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4812-4819. [PMID: 35417177 DOI: 10.1021/acs.langmuir.1c03241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent adaptable networks (CANs) are an emerging kind of smart materials in which cross-links are reversible upon some stimuli and then provide malleability and a stimuli-responsive ability to the materials. There is a trend to endow CANs with multistimuli-responsive capabilities and rapid stress relaxation to pursue more advanced applications. To integrate these two features into one material, here, dual-dynamic covalent bonds (imines and boronic esters) and aniline trimer (ACAT) were incorporated into the styrene butadiene elastomer as dynamic cross-links. The obtained CANs were demonstrated with rapid stress relaxation and a relatively low activation energy of 36 ± 1 kJ mol-1, resulting from the synergistic effect of dual-dynamic covalent bonds to rearrange the network at a faster rate than for either imines or boronic esters. Because of the dynamic nature of imines or boronic esters, the elastomer can be recycled upon heat. Moreover, the appearance and configuration of the elastomer could also be manipulated by pH and light because of the inclusion of ACAT. All in all, the coupled multistimuli-responsive behavior and rapid stress relaxation in one single elastomer would potentially be applicable for sensors and actuators with good recyclability.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Polymer Materials and Engineering, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Youwei Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, and Shanghai Key Lab of Electrical Insulation & Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zongrui Zhang
- Department of Polymer Materials and Engineering, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Zixing Shi
- School of Chemistry and Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, and Shanghai Key Lab of Electrical Insulation & Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiangang Gao
- Department of Polymer Materials and Engineering, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
3
|
Xiao Y, Liu D, Xiao WX, Yuan L, Yang KK, Wang YZ. Constructing a shape memory network with controllable stability and dynamic features through cation–π interactions. Polym Chem 2022. [DOI: 10.1039/d2py00746k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dynamic shape memory network, PCL-Pyr, with excellent shape memory effects, mechanical performance and reprocessability was constructed based on cation–π interactions.
Collapse
Affiliation(s)
- Yi Xiao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Dan Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wen-Xia Xiao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ling Yuan
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ke-Ke Yang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Zhang C, Lu X, Wang Z, Xia H. Progress in Utilizing Dynamic Bonds to Fabricate Structurally Adaptive Self-Healing, Shape Memory, and Liquid Crystal Polymers. Macromol Rapid Commun 2021; 43:e2100768. [PMID: 34964192 DOI: 10.1002/marc.202100768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Indexed: 11/09/2022]
Abstract
Stimuli-responsive structurally dynamic polymers are capable of mimicking the biological systems to adapt themselves to the surrounding environmental changes and subsequently exhibiting a wide range of responses ranging from self-healing to complex shape-morphing. Dynamic self-healing polymers (SHPs), shape-memory polymers (SMPs) and liquid crystal elastomers (LCEs), which are three representative examples of stimuli-responsive structurally dynamic polymers, have been attracting broad and growing interest in recent years because of their potential applications in the fields of electronic skin, sensors, soft robots, artificial muscles, and so on. We review recent advances and challenges in the developments towards dynamic SHPs, SMPs and LCEs, focusing on the chemistry strategies and the dynamic reaction mechanisms that enhance the performances of the materials including self-healing, reprocessing and reprogramming. We compare and discuss the different dynamic chemistries and their mechanisms on the enhanced functions of the materials, where three summary tables are presented: a library of dynamic bonds and the resulting characteristics of the materials. Finally, we provide a critical outline of the unresolved issues and future perspectives on the emerging developments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xili Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
5
|
Zhang H, Wang D, Wu N, Li C, Zhu C, Zhao N, Xu J. Recyclable, Self-Healing, Thermadapt Triple-Shape Memory Polymers Based on Dual Dynamic Bonds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9833-9841. [PMID: 31989812 DOI: 10.1021/acsami.9b22613] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fabricating a single polymer network with a combination of a multi-shape memory effect (multiple-SME), solid-state plasticity, recyclability and self-healing behavior remains a challenge. We designed imine bond and ionic hydrogen bond dual cross-linked polybutadiene (PB) networks. The resulting PB networks showed a triple-shape memory effect, where imine bonds could be used to fix the permanent shape and ionic hydrogen bonds and glass transition acted as the transition segments for fixing/releasing the temporary shapes. Additionally, the dual dynamic bonds offered PB networks outstanding solid-state plasticity, recyclability and self-healing behavior. This strategy provides some insights for preparing shape memory polymers integrating multiple-SME and multi-functionality.
Collapse
Affiliation(s)
- Huan Zhang
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen , Guangdong 518060 , China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Ningning Wu
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Cuihua Li
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen , Guangdong 518060 , China
| | - Caizhen Zhu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen , Guangdong 518060 , China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|