1
|
Non-noble metal Bi/BiVO4 photoanode for surface plasmon resonance-induced photoelectrochemical biosensor of hydrogen peroxide detection. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Porous Pb-Doped ZnO Nanobelts with Enriched Oxygen Vacancies: Preparation and Their Chemiresistive Sensing Performance. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Among various approaches to improve the sensing performance of metal oxide, the metal-doped method is perceived as effective, and has received great attention and is widely investigated. However, it is still a challenge to construct heterogeneous metal-doped metal oxide with an excellent sensing performance. In the present study, porous Pb-doped ZnO nanobelts were prepared by a simply partial cation exchange method, followed by in situ thermal oxidation. Detailed characterization confirmed that Pb was uniformly distributed on porous nanobelts. Additionally, it occupied the Zn situation, not forming its oxides. The gas-sensing measurements revealed that 0.61 at% Pb-doped ZnO porous nanobelts exhibited a selectively enhanced response with long-term stability toward n-butanol among the investigated VOCs. The relative response to 50 ppm of n-butanol was up to 47.7 at the working temperature of 300 °C. Additionally, the response time was short (about 5 s). These results were mainly ascribed to the porous nanostructure, two-dimensional belt-like morphology, enriched oxygen vacancies and the specific synergistic effect from the Pb dopant. Finally, a possible sensing mechanism of porous Pb-doped ZnO nanobelts is proposed and discussed.
Collapse
|
3
|
Zhang W, Zhang H, Huang W, Lu X, Gao S, Wang J, Zhang D, Zhang X, Wang M. Structure, morphology and photocatalytic performance of europium doped bismuth vanadate. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01623g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Europium-doped bismuth vanadate EBVO-x (0≦x≦7) with different crystalline phases have been successfully synthesized via a simple one-pot hydrothermal method. X-ray diffractometer, Raman scattering and Scanning electron microscope revealed that the...
Collapse
|
4
|
Li J, Liang Q, Zhang B, Chen H, Tian X, Fan M, Guo Y, Bai N, Zou X, Li GD. Olivine-type cadmium germanate: a new sensing semiconductor for the detection of formaldehyde at the ppb level. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00772f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, for the first time, olivine-structured Cd2GeO4 was identified as an excellent formaldehyde sensing material, with a low detection limit of 60 ppb.
Collapse
Affiliation(s)
- Jiayu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qihua Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bo Zhang
- International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinhua Tian
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Meihong Fan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunjia Guo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ni Bai
- School of Mechanical and Metallurgical Engineering, Jiangsu University of Science and Technology, Zhangjiagang 215600, P. R. China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guo-Dong Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
5
|
Li W, He L, Bai X, Liu L, Ikram M, Lv H, Ullah M, Khan M, Kan K, Shi K. Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00119h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
S-Doped biomorphic SnO2 with active S-terminations and S–Sn–O chemical bonds has significantly improved gas sensing performance to NO2 at room temperature.
Collapse
|