1
|
Jozeliu Naitė A, Javorskis T, Vaitkevičius V, Klimavičius V, Orentas E. Fully Supramolecular Chiral Hydrogen-Bonded Molecular Tweezer. J Am Chem Soc 2022; 144:8231-8241. [PMID: 35500199 DOI: 10.1021/jacs.2c01455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular tweezers are open-ended, cavity-possessing U-shaped molecular architectures with high potential for various applications in supramolecular chemistry. Their covalent synthesis, however, is often tedious and the structures obtained lack structural responsiveness beyond the limited conformational flexibility of the scaffold. Herein we present a proof-of-concept study on the design, synthesis, assembly, and transformations of a novel supramolecular construct─a fully noncovalent molecular tweezer. The supramolecular tweezer was assembled from a set of four building blocks, composed of two identical molecular angle bars and two flat aromatic extension wings, using hydrogen bonding only. The chirality-assisted aggregation process was utilized to ensure scaffold bending directionality using enantiomerically pure bicyclic angle bars. To address the challenges associated with shifting of the equilibrium from strong cooperative narcissistic self-sorting of self-complementary angle bars in cyclic aggregates toward integrative self-sorting in molecular tweezers, a rational desymmetrization strategy was applied. The dynamic supramolecular tweezer has been shown to display rich supramolecular chemistry, allowing for stimuli-responsive change in aggregate topology and solvent-responsive supramolecular polymerization.
Collapse
Affiliation(s)
- Augustina Jozeliu Naitė
- Department of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Tomas Javorskis
- Department of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Vytenis Vaitkevičius
- Department of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | | | - Edvinas Orentas
- Department of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
2
|
Ye C, Yuan W, Wei X, Liang R, Jozeliu Naitė A, de Mendoza J, Orentas E, Shi Q. Metal Coordination Guided Formation of Discrete Neutral Three-Component Hydrogen-Bonded Architectures. Org Lett 2020; 22:9215-9219. [PMID: 33196214 DOI: 10.1021/acs.orglett.0c03397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interesting molecular architectures were obtained by combining heterodimeric quadruple hydrogen-bonding and neutral metal corner braces. The selection of cyclic and noncyclic aggregates from a random mixture of two-component assemblies has been achieved through metal coordination and careful adjustment of monomer rigidity and dimensions.
Collapse
Affiliation(s)
- Chuang Ye
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Wei Yuan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xin Wei
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Rongzu Liang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Augustina Jozeliu Naitė
- Department of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Javier de Mendoza
- Institute of Chemical Research of Catalonia (ICIQ), AV. Països Catalans, 16, 43007 Tarragona, Spain
| | - Edvinas Orentas
- Department of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Qixun Shi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Shi Q, Zhou X, Yuan W, Su X, Neniškis A, Wei X, Taujenis L, Snarskis G, Ward JS, Rissanen K, de Mendoza J, Orentas E. Selective Formation of S4- and T-Symmetric Supramolecular Tetrahedral Cages and Helicates in Polar Media Assembled via Cooperative Action of Coordination and Hydrogen Bonds. J Am Chem Soc 2020; 142:3658-3670. [PMID: 31983204 DOI: 10.1021/jacs.0c00722] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report on the synthesis and self-assembly study of novel supramolecular monomers encompassing quadruple hydrogen-bonding motifs and metal-coordinating 2,2'-bipyridine units. When mixed with metal ions such as Fe2+ or Zn2+, the tetrahedron cage complexes are formed in quantitative yields and full diastereoselectivity, even in highly polar acetonitrile or methanol solvents. The symmetry of the complexes obtained has been shown to depend critically on the flexibility of the ligand. Restriction of the rotation of the hydrogen-bonding unit with respect to the metal-coordinating site results in a T-symmetric cage, whereas introducing flexibility either through a methylene linker or rotating benzene ring allows the formation of S4-symmetric cages with self-filled interior. In addition, the possibility to select between tetrahedral cages or helicates and to control the dimensions of the aggregate has been demonstrated with a three-component assembly using external hydrogen-bonding molecular inserts or by varying the radius of the metal ion (Hg2+ vs Fe2+). Self-sorting studies of individual Fe2+ complexes with ligands of different sizes revealed their inertness toward ligand scrambling.
Collapse
Affiliation(s)
- Qixun Shi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China.,State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Xiaohong Zhou
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Wei Yuan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Xiaoshi Su
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Algirdas Neniškis
- Department of Organic Chemistry , Vilnius University , Naugarduko 24 , LT-03225 Vilnius , Lithuania
| | - Xin Wei
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Lukas Taujenis
- Thermo Fisher Scientific Baltics , V. A. Graičiu̅no 8, LT-02241 Vilnius , Lithuania
| | - Gustautas Snarskis
- Department of Organic Chemistry , Vilnius University , Naugarduko 24 , LT-03225 Vilnius , Lithuania
| | - Jas S Ward
- Department of Chemistry , University of Jyvaskyla , P.O. Box 35 , 40014 Jyväskylä , Finland
| | - Kari Rissanen
- Department of Chemistry , University of Jyvaskyla , P.O. Box 35 , 40014 Jyväskylä , Finland
| | - Javier de Mendoza
- Institute of Chemical Research of Catalonia (ICIQ) , AV. Països Catalans, 16 , 43007 Tarragona , Spain
| | - Edvinas Orentas
- Department of Organic Chemistry , Vilnius University , Naugarduko 24 , LT-03225 Vilnius , Lithuania
| |
Collapse
|
4
|
Aparicio F, Mayoral MJ, Montoro-García C, González-Rodríguez D. Guidelines for the assembly of hydrogen-bonded macrocycles. Chem Commun (Camb) 2019; 55:7277-7299. [DOI: 10.1039/c9cc03166a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article highlights selected examples on the synthesis of hydrogen-bonded macrocycles from ditopic molecules and analyze the main factors, often interrelated, that influence the equilibrium between ring and chain species.
Collapse
Affiliation(s)
- F. Aparicio
- Nanostructured Molecular Systems and Materials (MSMn) group
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
| | - M. J. Mayoral
- Nanostructured Molecular Systems and Materials (MSMn) group
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
| | - C. Montoro-García
- Nanostructured Molecular Systems and Materials (MSMn) group
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
| | - D. González-Rodríguez
- Nanostructured Molecular Systems and Materials (MSMn) group
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
| |
Collapse
|