1
|
Yao FH, Liang X, Qi SH. Two new linear peptides from the marine-derived fungus Penicillium sp. SCSIO 41512. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:941-948. [PMID: 36916424 DOI: 10.1080/10286020.2023.2189107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Two new linear peptides, penicamides A and B (1 and 2), together with four known analogous were isolated from the extracts of the marine-derived fungus Penicillium sp. SCSIO 41512. Their structures were elucidated by analysis of 1D/2D NMR data and HRESI-MS. Their absolute configurations were established by Marfey's methods and quantum chemical calculations.
Collapse
Affiliation(s)
- Fei-Hua Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
2
|
Zhao S, Li J, Liu J, Xiao S, Yang S, Mei J, Ren M, Wu S, Zhang H, Yang X. Secondary metabolites of Alternaria: A comprehensive review of chemical diversity and pharmacological properties. Front Microbiol 2023; 13:1085666. [PMID: 36687635 PMCID: PMC9852848 DOI: 10.3389/fmicb.2022.1085666] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
Fungi are considered to be one of the wealthiest sources of bio-metabolites that can be employed for yielding novel biomedical agents. Alternaria, including parasitic, saprophytic, and endophytic species, is a kind of dark fungi that can produce a broad array of secondary metabolites (SMs) widely distributed in many ecosystems. These are categorized into polyketides, nitrogen-containing compounds, quinones, terpenes, and others based on the unique structural features of the metabolites. New natural products derived from Alternaria exhibit excellent bioactivities characterized by antibacterial, antitumor, antioxidative, phytotoxic, and enzyme inhibitory properties. Thus, the bio-metabolites of Alternaria species are significantly meaningful for pharmaceutical, industrial, biotechnological, and medicinal applications. To update the catalog of secondary metabolites synthesized by Alternaria fungi, 216 newly described metabolites isolated from Alternaria fungi were summarized with their diverse chemical structures, pharmacological activity, and possible biosynthetic pathway. In addition, possible insights, avenues, and challenges for future research and development of Alternaria are discussed.
Collapse
Affiliation(s)
- Shiqin Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Li
- Department of Pharmacy, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinping Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Shaoyujia Xiao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Sumei Yang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jiahui Mei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Mengyao Ren
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Shuzhe Wu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Hongyuan Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xiliang Yang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China,*Correspondence: Xiliang Yang
| |
Collapse
|
3
|
Sebak M, Molham F, Greco C, Tammam MA, Sobeh M, El-Demerdash A. Chemical diversity, medicinal potentialities, biosynthesis, and pharmacokinetics of anthraquinones and their congeners derived from marine fungi: a comprehensive update. RSC Adv 2022; 12:24887-24921. [PMID: 36199881 PMCID: PMC9434105 DOI: 10.1039/d2ra03610j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022] Open
Abstract
Marine fungi receive excessive attention as prolific producers of structurally unique secondary metabolites, offering promising potential as substitutes or conjugates for current therapeutics, whereas existing research has only scratched the surface in terms of secondary metabolite diversity and potential industrial applications as only a small share of bioactive natural products have been identified from marine-derived fungi thus far. Anthraquinones derived from filamentous fungi are a distinct large group of polyketides containing compounds which feature a common 9,10-dioxoanthracene core, while their derivatives are generated through enzymatic reactions such as methylation, oxidation, or dimerization to produce a large variety of anthraquinone derivatives. A considerable number of reported anthraquinones and their derivatives have shown significant biological activities as well as highly economical, commercial, and biomedical potentialities such as anticancer, antimicrobial, antioxidant, and anti-inflammatory activities. Accordingly, and in this context, this review comprehensively covers the state-of-art over 20 years of about 208 structurally diverse anthraquinones and their derivatives isolated from different species of marine-derived fungal genera along with their reported bioactivity wherever applicable. Also, in this manuscript, we will present in brief recent insights centred on their experimentally proved biosynthetic routes. Moreover, all reported compounds were extensively investigated for their in-silico drug-likeness and pharmacokinetics properties which intriguingly highlighted a list of 20 anthraquinone-containing compounds that could be considered as potential drug lead scaffolds.
Collapse
Affiliation(s)
- Mohamed Sebak
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
| | - Fatma Molham
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
| | - Claudio Greco
- Molecular Microbiology Department, The John Innes Center Norwich Research Park Norwich NR4 7UH UK
| | - Mohamed A Tammam
- Department of Biochemistry, Faculty of Agriculture, Fayoum University Fayoum 63514 Egypt
| | - Mansour Sobeh
- AgroBioSciences Department, Mohammed VI Polytechnic University (UM6P) Ben Guerir Morocco
| | - Amr El-Demerdash
- Organic Chemistry Division, Department of Chemistry, Faculty of Science, Mansoura University Mansoura 35516 Egypt +00447834240424
- Department of Metabolic Biology and Biological Chemistry, The John Innes Center Norwich Research Park Norwich NR4 7UH UK
| |
Collapse
|
4
|
Hafez Ghoran S, Taktaz F, Ayatollahi SA, Kijjoa A. Anthraquinones and Their Analogues from Marine-Derived Fungi: Chemistry and Biological Activities. Mar Drugs 2022; 20:474. [PMID: 35892942 PMCID: PMC9394430 DOI: 10.3390/md20080474] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
Anthraquinones are an interesting chemical class of polyketides since they not only exhibit a myriad of biological activities but also contribute to managing ecological roles. In this review article, we provide a current knowledge on the anthraquinoids reported from marine-derived fungi, isolated from various resources in both shallow waters such as mangrove plants and sediments of the mangrove habitat, coral reef, algae, sponges, and deep sea. This review also tentatively categorizes anthraquinone metabolites from the simplest to the most complicated scaffolds such as conjugated xanthone-anthraquinone derivatives and bianthraquinones, which have been isolated from marine-derived fungi, especially from the genera Apergillus, Penicillium, Eurotium, Altenaria, Fusarium, Stemphylium, Trichoderma, Acremonium, and other fungal strains. The present review, covering a range from 2000 to 2021, was elaborated through a comprehensive literature search using the following databases: ACS publications, Elsevier, Taylor and Francis, Wiley Online Library, MDPI, Springer, and Thieme. Thereupon, we have summarized and categorized 296 anthraquinones and their derivatives, some of which showed a variety of biological properties such as enzyme inhibition, antibacterial, antifungal, antiviral, antitubercular (against Mycobacterium tuberculosis), cytotoxic, anti-inflammatory, antifouling, and antioxidant activities. In addition, proposed biogenetic pathways of some anthraquinone derivatives are also discussed.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666-63111, Iran; (S.H.G.); (S.A.A.)
- Medicinal Plant Breeding & Development Research Institute, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Department of Biology, Faculty of Sciences, University of Hakim Sabzevari, Sabzevar 96179-76487, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666-63111, Iran; (S.H.G.); (S.A.A.)
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Liu M, Zhang X, Li G. Structural and Biological Insights into the Hot‐spot Marine Natural Products Reported from 2012 to 2021. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
6
|
Isoquinoline Alkaloids as Protein Tyrosine Phosphatase Inhibitors from a Deep-Sea-Derived Fungus Aspergillus puniceus. Mar Drugs 2022; 20:md20010078. [PMID: 35049933 PMCID: PMC8781450 DOI: 10.3390/md20010078] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/22/2023] Open
Abstract
Puniceusines A-N (1-14), 14 new isoquinoline alkaloids, were isolated from the extracts of a deep-sea-derived fungus, Aspergillus puniceus SCSIO z021. Their structures were elucidated by spectroscopic analyses. The absolute configuration of 9 was determined by ECD calculations, and the structures of 6 and 12 were further confirmed by a single-crystal X-ray diffraction analysis. Compounds 3-5 and 8-13 unprecedentedly contained an isoquinolinyl, a polysubstituted benzyl or a pyronyl at position C-7 of isoquinoline nucleus. Compounds 3 and 4 showed selective inhibitory activity against protein tyrosine phosphatase CD45 with IC50 values of 8.4 and 5.6 µM, respectively, 4 also had a moderate cytotoxicity towards human lung adenocarcinoma cell line H1975 with an IC50 value of 11.0 µM, and 14, which contained an active center, -C=N+, exhibited antibacterial activity. An analysis of the relationship between the structures, enzyme inhibitory activity and cytotoxicity of 1-14 revealed that the substituents at C-7 of the isoquinoline nucleus could greatly affect their bioactivity.
Collapse
|
7
|
Marcarino MO, Cicetti S, Zanardi MM, Sarotti AM. A critical review on the use of DP4+ in the structural elucidation of natural products: the good, the bad and the ugly. A practical guide. Nat Prod Rep 2021; 39:58-76. [PMID: 34212963 DOI: 10.1039/d1np00030f] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2015 up to the end of 2020Even in the golden age of NMR, the number of natural products being incorrectly assigned is becoming larger every day. The use of quantum NMR calculations coupled with sophisticated data analysis provides ideal complementary tools to facilitate the elucidation process in challenging cases. Among the current computational methodologies to perform this task, the DP4+ probability is a popular and widely used method. This updated version of Goodman's DP4 synergistically combines NMR calculations at higher levels of theory with the Bayesian analysis of both scaled and unscaled data. Since its publication in late 2015, the use of DP4+ to solve controversial natural products has substantially grown, with several predictions being confirmed by total synthesis. To date, the structures of more than 200 natural products were determined with the aid of DP4+. However, all that glitters is not gold. Besides its intrinsic limitations, on many occasions it has been improperly used with potentially important consequences on the quality of the assignment. Herein we present a critical revision on how the scientific community has been using DP4+, exploring the strengths of the method and how to obtain optimal results from it. We also analyze the weaknesses of DP4+, and the paths to by-pass them to maximize the confidence in the structural elucidation.
Collapse
Affiliation(s)
- Maribel O Marcarino
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - Soledad Cicetti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - María M Zanardi
- Instituto de Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, Rosario 2000, Argentina.
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
8
|
Abstract
Colorants find social and commercial applications in cosmetics, food, pharmaceuticals, textiles, and other industrial sectors. Among the available options, chemically synthesized colorants are popular due to their low-cost and flexible production modes, but health and environmental concerns have encouraged the valorization of biopigments that are natural and ecofriendly. Among natural biopigment producers, microorganisms are noteworthy for their all-seasonal production of stable and low-cost pigments with high-yield titers. Fungi are paramount sources of natural pigments. They occupy diverse ecological niches with adaptive metabolisms and biocatalytic pathways, making them entities with an industrial interest. Industrially important biopigments like carotenoids, melanins, riboflavins, azaphilones, and quinones produced by filamentous fungi are described within the context of this review. Most recent information about fungal pigment characteristics, biochemical production routes and pathways, potential applications, limitations, and future research perspectives are described.
Collapse
Affiliation(s)
- Haritha Meruvu
- Department of Chemical Engineering, Andhra University College of Engineering - AU North Campus, Andhra University, Visakhapatnam, India.,Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, India.,Department of Bioengineering, Faculty of Engineering and Natural Sciences, Gaziosmanpaşa University, Tokat, Turkey
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo (USP), Estrada Municipal do Campinho, Lorena/SP, Brazil
| |
Collapse
|
9
|
Zhong W, Chen Y, Wei X, Wang J, Zeng Q, Tian X, Zhang W, Wang F, Zhang S. Euroticins C–E, three pairs of polycyclic salicylaldehyde derivative enantiomers from a marine-derived fungus Eurotium sp. SCSIO F452. Org Chem Front 2021. [DOI: 10.1039/d0qo01519a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Euroticins C–E (1–3) are three pairs of salicylaldehyde derivative enantiomers representing two types of unprecedented highly constructed 6/6/6/6 tetracyclic structures from a marine-derived fungus Eurotium sp. SCSIO F452.
Collapse
Affiliation(s)
- Weimao Zhong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
- Guangdong Key Laboratory of Marine Materia Medica
- RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
- China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
- Guangdong Key Laboratory of Marine Materia Medica
- RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
| | - Qi Zeng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
- Guangdong Key Laboratory of Marine Materia Medica
- RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
- Guangdong Key Laboratory of Marine Materia Medica
- RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Fazuo Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
- Guangdong Key Laboratory of Marine Materia Medica
- RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
- Guangdong Key Laboratory of Marine Materia Medica
- RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
| |
Collapse
|
10
|
Singh R, Salunke DB. Diverse chemical space of indoleamine-2,3-dioxygenase 1 (Ido1) inhibitors. Eur J Med Chem 2020; 211:113071. [PMID: 33341650 DOI: 10.1016/j.ejmech.2020.113071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) catalyses the first and rate limiting step of kynurenine pathway accounting for the major contributor of L-Tryptophan degradation. The Kynurenine metabolites are identified as essential cofactors, antagonists, neurotoxins, immunomodulators, antioxidants as well as carcinogens. The catalytic active site of IDO1 enzyme consists of hydrophobic Pocket-A positioned in the distal heme site and remains connected to a second hydrophobic Pocket-B towards the entrance of the active site. IDO1 enzyme also relates directly to the modulation of the innate and adaptive immune system. Various studies proved that the over expression of IDO1 enzyme play a predominant role in the escape of immunity during cancer progression. Recently, there has been considerable interest in evaluating the potential of IDO1 inhibitors to mobilize the body's immune system against solid tumours. In the last two decades, enormous attempts to advance new IDO1 inhibitors are on-going both in pharmaceutical industries and in academia which resulted in the discovery of a diverse range of selective and potent IDO1 inhibitors. The IDO1 inhibitors have therapeutic utility in various diseases and in the near future, it may have utility in the treatment of COVID-19. Despite various reviews on IDO1 inhibitors in last five years, none of the reviews provide a complete overview of diverse chemical space including naturally occurring and synthetic IDO1 inhibitors with detailed structure activity relationship studies. The present work provides a complete overview on the IDO1 inhibitors known in the literature so far along with the Structure-Activity Relationship (SAR) in each class of compounds.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160 014, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160 014, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
11
|
Pan S, Zhou Y, Wang Q, Wang Y, Tian C, Wang T, Huang L, Nan J, Li L, Yang S. Discovery and structure-activity relationship studies of 1-aryl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione derivatives as potent dual inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) and trytophan 2,3-dioxygenase (TDO). Eur J Med Chem 2020; 207:112703. [DOI: 10.1016/j.ejmech.2020.112703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
|
12
|
Fungal Bioactive Anthraquinones and Analogues. Toxins (Basel) 2020; 12:toxins12110714. [PMID: 33198270 PMCID: PMC7698144 DOI: 10.3390/toxins12110714] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022] Open
Abstract
This review, covering the literature from 1966 to the present (2020), describes naturally occurring fungal bioactive anthraquinones and analogues biosynthesized by the acetate route and concerning several different functionalized carbon skeletons. Hydrocarbons, lipids, sterols, esters, fatty acids, derivatives of amino acids, and aromatic compounds are metabolites belonging to other different classes of natural compounds and are generated by the same biosynthetic route. All of them are produced by plant, microorganisms, and marine organisms. The biological activities of anthraquinones and analogues comprise phytotoxic, antibacterial, antiviral, anticancer, antitumor, algicide, antifungal, enzyme inhibiting, immunostimulant, antiplatelet aggregation, cytotoxic, and antiplasmodium activities. The review also covers some practical industrial applications of anthraquinones.
Collapse
|
13
|
Chen S, Deng Y, Yan C, Wu Z, Guo H, Liu L, Liu H. Secondary Metabolites with Nitric Oxide Inhibition from Marine-Derived Fungus Alternaria sp. 5102. Mar Drugs 2020; 18:md18080426. [PMID: 32823987 PMCID: PMC7460390 DOI: 10.3390/md18080426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Two new benzofurans, alternabenzofurans A and B (1 and 2) and two new sesquiterpenoids, alternaterpenoids A and B (3 and 4), along with 18 known polyketides (5−22), were isolated from the marine-derived fungus Alternaria sp. 5102. Their structures were elucidated on the basis of extensive spectroscopic analyses (1D and 2D NMR, HR-ESIMS, and ECD) and X-ray crystallography, as well as the modified Mosher’s method. Compounds 2, 3, 5, 7, 9–18, and 20–22 exhibited potent anti-inflammatory activity by inhibiting the production of NO in RAW264.7 cells activated by lipopolysaccharide with IC50 values in the range from 1.3 to 41.1 μM. Structure-activity relationships of the secondary metabolites were discussed.
Collapse
Affiliation(s)
- Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.C.); (Z.W.); (H.G.); (L.L.)
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Yanlian Deng
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; (Y.D.); (C.Y.)
| | - Chong Yan
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; (Y.D.); (C.Y.)
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.C.); (Z.W.); (H.G.); (L.L.)
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.C.); (Z.W.); (H.G.); (L.L.)
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.C.); (Z.W.); (H.G.); (L.L.)
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Hongju Liu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; (Y.D.); (C.Y.)
- Correspondence: ; Tel.: +86-769-22896599
| |
Collapse
|
14
|
Wang HL, Li R, Li J, He J, Cao ZY, Kurtán T, Mándi A, Zheng GL, Zhang W. Alternarin A, a Drimane Meroterpenoid, Suppresses Neuronal Excitability from the Coral-Associated Fungi Alternaria sp. ZH-15. Org Lett 2020; 22:2995-2998. [PMID: 32237750 DOI: 10.1021/acs.orglett.0c00746] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alternarin A (1), a rearranged drimane meroterpenoid characterized by a thioglycerate moiety, was isolated together with two known analogues from the coral-associated fungi Alternaria sp. ZH-15. Its structure was determined based on spectroscopic analysis, modified Mosher's method, and TDDFT/ECD calculations. In a primary cultured cortical neuronal network, compound 1 effectively inhibited the activity of spontaneous synchronous Ca2+ oscillations and 4-aminopyridine induced epileptic discharges in the low micromolar concentration range.
Collapse
Affiliation(s)
- Hong-Liang Wang
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China.,NCO School of Army Medical University, 450 West Zhong-Shan Rd., Shijiazhuang 050000, People's Republic of China
| | - Ran Li
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| | - Jiao Li
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Gao-Ke Road, Hangzhou 311402, People's Republic of China
| | - Jing He
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long-Mian Avenue, Nanjing 211198, People's Republic of China
| | - Zheng-Yu Cao
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long-Mian Avenue, Nanjing 211198, People's Republic of China
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary
| | - Gui-Liang Zheng
- Department of Otorhinolaryngology, Head and Neck Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong-Jiang Road, Shanghai 200092, People's Republic of China
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China.,Tongji Hospital Affiliated to Tongji University, 389 Xin-Cun Road, Shanghai 200065, People's Republic of China
| |
Collapse
|
15
|
Song XM, Zhou XM, Li YL, Huang LB, Chen CC, Gao Y, He L, Mao XQ, Chen B, Liu JW, Liu HJ, Song XP, Han CR. Two new cephalochromin derivative from the Alternaria sp. ZG22. Nat Prod Res 2019; 35:3370-3375. [PMID: 31841031 DOI: 10.1080/14786419.2019.1700248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Two new cephalochromin derivatives, prenylcephalochromin A (1), prenylcephalochromin B (2), along with cephalochromin (3) were isolated from the Alternaria sp. ZG22 obtained from a Dasymaschalon rostratum collected from the Hainan. The structures of two new compounds were elucidated by comprehensive spectroscopic methods. Compounds 1-3 showed α-glucosidase inhibitory activity.
Collapse
Affiliation(s)
- Xin-Ming Song
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
| | - Xue-Ming Zhou
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
| | - Ya-Ling Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
| | - Li-Bing Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
| | - Cai-Cui Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
| | - Yan Gao
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
| | - Lin He
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
| | - Xiao-Qun Mao
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
| | - Bing Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
| | - Jing-Wen Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
| | - Hui-Jie Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
| | - Xiao-Ping Song
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P. R. China
| | - Chang-Ri Han
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Medicinal and Edible Plants Resources of Hainan Province, School of Chemical and Material Engineering, Hainan Vocational University of Science and Technology, Haikou, P. R. China
| |
Collapse
|
16
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2019. [DOI: 10.1039/c9np90045d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as burlemarxione A from Clusia burle-marxii.
Collapse
|