1
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
2
|
Wang Y, Li SJ, Jiang F, Lan Y, Wang X. Making Full Use of TMSCF 3: Deoxygenative Trifluoromethylation/Silylation of Amides. J Am Chem Soc 2024; 146:19286-19294. [PMID: 38956888 DOI: 10.1021/jacs.4c04760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
As one of the most powerful trifluoromethylation reagents, (trifluoromethyl)trimethylsilane (TMSCF3) has been widely used for the synthesis of fluorine-containing molecules. However, to the best of our knowledge, the simultaneous incorporation of both TMS- and CF3- groups of this reagent onto the same carbon of the products has not been realized. Herein, we report an unprecedented SmI2/Sm promoted deoxygenative difunctionalization of amides with TMSCF3, in which both silyl and trifluoromethyl groups are incorporated into the final product, yielding α-silyl-α-trifluoromethyl amines with high efficiency. Notably, the silyl group could be further transformed into other functional groups, providing a new method for the synthesis of α-quaternary α-CF3-amines.
Collapse
Affiliation(s)
- Yuxiao Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shi-Jun Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Feng Jiang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yu Lan
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Lal N, Shirsath SB, Singh P, Deepshikha, Shaikh AC. Allylsilane as a versatile handle in photoredox catalysis. Chem Commun (Camb) 2024; 60:4633-4647. [PMID: 38606528 DOI: 10.1039/d4cc00734d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Organosilanes have secured a special place in the synthetic world for several decades. However, among them, allylsilanes are a choice reagent for organic chemists to develop novel organic transformations. In recent years researchers have proved that visible-light photoredox catalysis has emerged as one of the most mild, sustainable, straightforward, and efficient strategies to construct simple to complex molecules with or without enantioselectivity. This review provides an in-depth analysis of recent advances and strategies employed in visible-light photoredox catalysis for allylsilane and its analogues for the development of various organic transformations. The review is divided into sections, each focused on a specific reactivity of allylsilane under light irradiation with C(sp2) center arene or alkene, C(sp2) center carbonyl, and C(sp3) center carbon functionality. In this review, we present optimization data, reaction scope, and mechanistic aspects to bring forward specific reactivity and selectivity trends of allylsilane in photoredox conditions.
Collapse
Affiliation(s)
- Nand Lal
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab 140 001, India.
| | - Sanket B Shirsath
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab 140 001, India.
| | - Puja Singh
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab 140 001, India.
| | - Deepshikha
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab 140 001, India.
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab 140 001, India.
| |
Collapse
|
4
|
Franceschi P, Cuadros S, Goti G, Dell'Amico L. Mechanisms and Synthetic Strategies in Visible Light-Driven [2+2]-Heterocycloadditions. Angew Chem Int Ed Engl 2023; 62:e202217210. [PMID: 36576751 DOI: 10.1002/anie.202217210] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
The synthesis of four membered heterocycles usually requires multi-step procedures and prefunctionalized reactants. A straightforward alternative is the photochemical [2+2]-heterocycloaddition between an alkene and a carbonyl derivative, conventionally based on the photoexcitation of this latter. However, this approach is limited by the absorption profile of the carbonyl, requiring in most of the cases the use of high-energy UV-light, that often results in undesired side reactions and/or the degradation of the reaction components. The development of new and milder visible light-driven [2+2]-heterocycloadditions is, therefore, highly desirable. In this Review, we highlight the most relevant achievements in the development of [2+2]-heterocycloadditions promoted by visible light, with a particular emphasis on the involved reaction mechanisms. The open challenges will also be discussed, suggesting new possible evolutions, and stimulating new methodological developments in the field.
Collapse
Affiliation(s)
- Pietro Franceschi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Sara Cuadros
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Giulio Goti
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
5
|
Vale J, Gomes RF, Afonso CAM, Candeias NR. Functionalized Cyclopentenes via the Formal [4+1] Cycloaddition of Photogenerated Siloxycarbenes from Acyl Silanes. J Org Chem 2022; 87:8910-8920. [PMID: 35736215 PMCID: PMC9776530 DOI: 10.1021/acs.joc.2c00591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This work describes the first formal cycloaddition reaction of photogenerated nucleophilic carbenes derived from acylsilanes with electrophilic dienes. The resulting transient donor-acceptor cyclopropane rearranges to its stable and highly functionalized cyclopentene isomer in an unprecedented metal-free process. The cyclopropanation-vinyl cyclopropane rearrangement sequence was corroborated by computational calculations. The cyclopropane formation corresponds to a higher energetic barrier, and the vinylcyclopropane-cyclopentene rearrangement proceeds through different mechanisms, although of comparable energies, depending on the stereochemistry of the cyclopropane.
Collapse
Affiliation(s)
- João
R. Vale
- iMed.ULisboa,
Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal,Faculty
of Engineering and Natural Sciences, Tampere
University, Korkeakoulunkatu 8, Tampere 33101, Finland
| | - Rafael F. Gomes
- iMed.ULisboa,
Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Carlos A. M. Afonso
- iMed.ULisboa,
Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal,
| | - Nuno R. Candeias
- Faculty
of Engineering and Natural Sciences, Tampere
University, Korkeakoulunkatu 8, Tampere 33101, Finland,LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal,
| |
Collapse
|