1
|
Santos CMM, Silva AMS. Transition Metal-Catalyzed Transformations of Chalcones. CHEM REC 2024; 24:e202400060. [PMID: 39008887 DOI: 10.1002/tcr.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Indexed: 07/17/2024]
Abstract
Chalcones are a class of naturally occurring flavonoid compounds associated to a variety of biological and pharmacological properties. Several reviews have been published describing the synthesis and biological properties of a vast array of analogues. However, overviews on the reactivity of chalcones has only been explored in a few accounts. To fill this gap, a systematic survey on the most recent developments in the transition metal-catalyzed transformation of chalcones was performed. The chemistry of copper, palladium, zinc, iron, manganese, nickel, ruthenium, cobalt, rhodium, iridium, silver, indium, gold, titanium, platinum, among others, as versatile catalysts will be highlighted, covering the literature from year 2000 to 2023, in more than 380 publications.
Collapse
Affiliation(s)
- Clementina M M Santos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Bragança, Apolónia, 5300-253, Bragança, Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Sachin, Sharma T, Chandra D, Sumit, Sharma U. Inherent directing group-enabled Co(III)-catalyzed C-H allylation/vinylation of isoquinolones. Chem Commun (Camb) 2024; 60:5626-5629. [PMID: 38715526 DOI: 10.1039/d4cc01146e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Co(III)-catalysed site-selective C8-allylation and vinylation of isoquinolones with allyl acetate and vinyl acetates has been accomplished. The oxo group of isoquinolone has been utilised as an inherent directing group. Based on preliminary mechanistic studies, a plausible mechanism for the developed reaction has also been delineated. Broad substrate scope with good to excellent yields and post-synthetic transformations of allylated and vinylated isoquinolines highlight the importance of the reaction.
Collapse
Affiliation(s)
- Sachin
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tamanna Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
| | - Devesh Chandra
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
| | - Sumit
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Sindhe H, Kamble A, Reddy MM, Singh A, Sharma S. Iridium(III)-catalyzed β-trifluoromethyl enone carbonyl-directed regioselective ortho-C(sp 2)-H olefination. Org Biomol Chem 2024; 22:1162-1166. [PMID: 38226536 DOI: 10.1039/d3ob02024j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Due to the lower LUMO energy level at the β-position of α,β-unsaturated-β-trifluoromethyl enone than that of its non-fluorinated counterpart, there is a challenge to activate the sp2 C-H bond of aromatic rings. Herein, we have reported iridium(III)-catalyzed β-trifluoromethyl enone carbonyl-directed regioselective aromatic C(sp2)-H olefination with acrylates under oxidative conditions. Furthermore, coupling with natural product-derived acrylates, scale-up and product diversification have also been performed.
Collapse
Affiliation(s)
- Haritha Sindhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat - 382355, India
| | - Akshay Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat - 382355, India
| | - Malladi Mounika Reddy
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat - 382355, India.
| | - Amardeep Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat - 382355, India.
| | - Satyasheel Sharma
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat - 382355, India.
| |
Collapse
|
4
|
Yu W, Zhou Y, Zhao Y, Bai W. Syntheses and characterizations of rhenaindole complexes. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Jothi Murugan S, Jeganmohan M. Cp*Co(III)-Catalyzed Regioselective [4 + 2]-Annulation of N-Chlorobenzamides with Vinyl Acetate/Vinyl Ketones. J Org Chem 2023; 88:1578-1589. [PMID: 36680527 DOI: 10.1021/acs.joc.2c02640] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An efficient and straightforward strategy for the synthesis of isoquinolones through [4 + 2]-annulation of N-chlorobenzamides with vinyl acetate in the presence of CoCp*(III) catalyst in a regioselective manner is described. Furthermore, the annulation reaction was diversified by using vinyl ketones. By utilizing this strategy, biologically valuable isoquinolone derivatives were prepared in good yields. Subsequently, isoquinolone derivatives were further transformed into 1-chloroisoquinolines in the presence of POCl3. Furthermore, mechanistic investigations such as deuterium labeling study and competition experiment were performed to support the proposed reaction mechanism.
Collapse
Affiliation(s)
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
6
|
Chen S, Yang Y, Chen C, Wang C. Advances in Transition-Metal-Catalyzed Keto Carbonyl-Directed C—H Bond Functionalization Reactions. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202205033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Kharitonov VB, Muratov DV, Loginov DA. Cyclopentadienyl complexes of group 9 metals in the total synthesis of natural products. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Dong X, Shang M, Chen S, Zhang T, Jalani HB, Lu H. Carbonyl-Assisted Iridium-Catalyzed C-H Amination Using 2,2,2-Trichloroethoxycarbonyl Azide. J Org Chem 2022; 87:13990-14004. [PMID: 36190135 DOI: 10.1021/acs.joc.2c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The carbonyl-directed, mono C-H amination of arenes has been achieved using [Cp*Ir(III)Cl2]2 as the catalyst and 2,2,2-trichloroethoxycarbonyl (Troc) azide as an aminating reagent. The amination proceeds smoothly with a variety of arylcarbonyl compounds, including alkyl and vinyl arylketones, secondary and tertiary aryl amides, and acetyl indoles. The resulting ortho-TrocNH arylcarbonyl compounds are easily transformed to the corresponding free arylamines, aryl carbamates, or aryl ureas. Taking advantage of the electrophilic nature of both Troc and carbonyl groups in ortho-TrocNH arylcarbonyl compounds, the subsequent cyclization with dinucleophilic reagents has also been demonstrated. This provides an efficient strategy for the construction of aryl-fused N-heterocycles.
Collapse
Affiliation(s)
- Xunqing Dong
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Mingzhou Shang
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Shuguang Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Tao Zhang
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Hitesh B Jalani
- Smart BioPharm, 310-Pilotplant, Incheon Techno-Park, 12-Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
9
|
Shambhavi CN, Jeganmohan M. Rh(III)-Catalyzed Enone Carbonyl/Ketone-Directed Aerobic C-H Olefination of Aromatics with Unactivated Olefins. J Org Chem 2022; 87:13236-13258. [PMID: 36128804 DOI: 10.1021/acs.joc.2c01730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Rh(III)-catalyzed weak enone carbonyl/ketone-assisted aerobic oxidative C-H olefination of aromatics with unactivated alkenes has been developed. This protocol involves cross-dehydrogenative Heck-type olefination reaction of various substituted biologically relevant chalcones and aromatic ketones such as acetophenones and chromones with various functionalized unactivated olefins in moderate to good yields. Further, ortho-alkylation of chalcones with norbornene is also demonstrated. A possible reaction mechanism involving weak chelation-assisted C-H activation/insertion/β-hydride elimination was proposed and supported by the deuterium labeling studies.
Collapse
Affiliation(s)
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
10
|
Mandal R, Garai B, Sundararaju B. Weak-Coordination in C–H Bond Functionalizations Catalyzed by 3d Metals. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05267] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rajib Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| | - Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
11
|
Jardim GAM, de Carvalho RL, Nunes MP, Machado LA, Almeida LD, Bahou KA, Bower JF, da Silva Júnior EN. Looking deep into C-H functionalization: the synthesis and application of cyclopentadienyl and related metal catalysts. Chem Commun (Camb) 2022; 58:3101-3121. [PMID: 35195128 DOI: 10.1039/d1cc07040a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal catalyzed C-H functionalization offers a versatile platform for methodology development and a wide variety of reactions now exist for the chemo- and site-selective functionalization of organic molecules. Cyclopentadienyl-metal (CpM) complexes of transition metals and their correlative analogues have found widespread application in this area, and herein we highlight several key applications of commonly used transition-metal Cp-type catalysts. In addition, an understanding of transition metal Cp-type catalyst synthesis is important, particularly where modifications to the catalyst structure are required for different applications, and a summary of this aspect is given.
Collapse
Affiliation(s)
- Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil. .,Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, UFSCar, 13565-905, Brazil
| | - Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Luana A Machado
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil. .,Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Leandro D Almeida
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Karim A Bahou
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| |
Collapse
|
12
|
Benny AT, Radhakrishnan EK. Advances in the site-selective C-5, C-3 and C-2 functionalization of chromones via sp 2 C-H activation. RSC Adv 2022; 12:3343-3358. [PMID: 35425362 PMCID: PMC8979368 DOI: 10.1039/d1ra08214k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 02/02/2023] Open
Abstract
In this work, site-selective C-H activation at C-5, C-3 and C-2 positions of chromones for the introduction of structural diversity to the chromone scaffold was studied. The keto group of the chromone moiety acts as the directing group for the selective functionalization of chromones at the C-5 position. Furthermore, the C-H functionalization at the electron-rich C-3 position of the chromone can be achieved using electrophilic coupling partners. The C-H functionalization at the C-2 position can be possible using nucleophilic coupling partners. The direct functionalization methods provide a better pathway for the generation of C-5, C-3 and C-2-substituted chromones with good atom economy than that of classical pre-functionalized reaction protocols.
Collapse
|
13
|
Yu Y, Wang Y, Li B, Tan Y, Zhao H, Li Z, Zhang C, Ma W. Ruthenium‐Catalyzed Vinylene Carbonate Annulation by C−H/N−H Functionalizations: Step‐Economical Access to Indoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101466] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yao Yu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610052 People's Republic of China
| | - Yang Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610052 People's Republic of China
| | - Bo Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610052 People's Republic of China
| | - Yuqiang Tan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610052 People's Republic of China
| | - Huan Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610052 People's Republic of China
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610052 People's Republic of China
| | - Chunran Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610052 People's Republic of China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610052 People's Republic of China
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan 610041 People's Republic of China
| |
Collapse
|
14
|
Zhou B, Qi X, Liu P, Dong G. Development and Mechanistic Studies of the Iridium‐Catalyzed C−H Alkenylation of Enamides with Vinyl Acetates: A Versatile Approach for Ketone Functionalization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bo Zhou
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| | - Peng Liu
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Guangbin Dong
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| |
Collapse
|
15
|
Zhou B, Qi X, Liu P, Dong G. Development and Mechanistic Studies of the Iridium-Catalyzed C-H Alkenylation of Enamides with Vinyl Acetates: A Versatile Approach for Ketone Functionalization. Angew Chem Int Ed Engl 2021; 60:20926-20934. [PMID: 34288309 DOI: 10.1002/anie.202107331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 01/21/2023]
Abstract
Ketone functionalization is a cornerstone of organic synthesis. Herein, we describe the development of an intermolecular C-H alkenylation of enamides with the feedstock chemical vinyl acetate to access diverse functionalized ketones. Enamides derived from various cyclic and acyclic ketones reacted efficiently, and a number of sensitive functional groups were tolerated. In this iridium-catalyzed transformation, two structurally and electronically similar alkenes-enamide and vinyl acetate-underwent selective cross-coupling through C-H activation. No reaction partner was used in large excess. The reaction is also pH- and redox-neutral with HOAc as the only stoichiometric by-product. Detailed experimental and computational studies revealed a reaction mechanism involving 1,2-Ir-C migratory insertion followed by syn-β-acetoxy elimination, which is different from that of previous vinyl acetate mediated C-H activation reactions. Finally, the alkenylation product can serve as a versatile intermediate to deliver a variety of structurally modified ketones.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
16
|
Basuli S, Sahu S, Saha S, Maji MS. Cp*Co(III)‐Catalyzed Dehydrative C2‐Prenylation of Pyrrole and Indole with Allyl Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Suchand Basuli
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| | - Samrat Sahu
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| | - Shuvendu Saha
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| | - Modhu Sudan Maji
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| |
Collapse
|
17
|
Logeswaran R, Jeganmohan M. Effect of Transition Metals on Chemodivergent Cross-Coupling of Acrylamides with Vinyl Acetate via C-H Activation. Org Lett 2021; 23:5679-5683. [PMID: 34264083 DOI: 10.1021/acs.orglett.1c01797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel chemodivergent cross-coupling of acrylamides and vinyl acetates has been realized via metal-catalyzed vinylic C-H activation. The selective olefinic C-H vinylation and alkenylation reaction was examined with a variety of differently functionalized acrylamides. The reaction efficiently generates a range of highly synthetically valuable butadienes with good functional group tolerance in good to moderate yields. A possible catalytic reaction mechanism involving the chelation-assisted olefinic C-H activation via an acetate-assisted deprotonation pathway is proposed.
Collapse
Affiliation(s)
- Ravichandran Logeswaran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India
| |
Collapse
|
18
|
Banjare SK, Nanda T, Pati BV, Biswal P, Ravikumar PC. O-Directed C-H functionalization via cobaltacycles: a sustainable approach for C-C and C-heteroatom bond formations. Chem Commun (Camb) 2021; 57:3630-3647. [PMID: 33870349 DOI: 10.1039/d0cc08199j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on providing comprehensive highlights of the recent advances in the field of cobalt-catalysed C-H functionalization and related synthetic concepts, relying on these through oxygen atom coordination. In recent years, 3d transition metal (Fe, Co, Cu & Ni) catalysed C-H functionalization reactions have received immense attention on account of its higher abundance and low cost, as compared to noble metals such as Ir, Rh, Ru and Pd. Among the first-row transition metals, cobalt is one of the extensively used metals for sustainable synthesis due to its unique reactivity towards the functionalization of inert C-H bonds. The functionalization of the inert C-H bond necessitates a proximal directing group. In this context, strongly coordinating nitrogen atom directed C-H functionalizations have been well explored. Nevertheless, strongly coordinating nitrogen-containing scaffolds, such as pyridine, pyrimidine, and 8-aminoquinoline, have to be installed and removed in a separate process. In contrast, C-H functionalizations through weakly coordinating atoms, such as oxygen, are largely underdeveloped. Since the oxygen atom is a part of many readily available functional groups, such as aldehydes, ketones, carboxylic acids, and esters, it could be used as directing groups for selective C-H functionalization reactions without any modification. Thus, the use of 3d transition metals, such as cobalt, along with weakly coordinating (oxygen) directing groups for C-H functionalization reactions are more sustainable, especially for the large-scale production of pharmaceuticals in industries. During the last decade, notable progress has been made using this concept. Nonetheless, almost all the reports are restricted to the formation of C-C and C-N bond. Therefore, there is a wide scope for developing this area for the formation of other bonds, such as C-X (halogens), C-B, C-S, and C-Se.
Collapse
Affiliation(s)
- Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) HBNI, Bhubaneswar, Odisha 752050, India.
| | | | | | | | | |
Collapse
|
19
|
Umadevi N, Kumar G, Reddy NG, Reddy BS. Recent Advances in C–H Activation and Functionalization of Quinazolinones/ Quinazolines. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201210180732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review summarizes the transition metal-catalyzed direct C–H functionalization
of quinazolinones and quinazolines through C-C, C-N and C-O bond formations. It focuses
mainly on the C-H (sp<sup>2</sup> or sp<sup>3</sup>) bond arylation, amination, sulfamidation, acetoxylation,
halogenation, annulation of quinazolinones and quinazolines. This review illustrates the scope
of C-H activation and functionalization of various quinazolinone and quinazoline derivatives.
Collapse
Affiliation(s)
- N. Umadevi
- Indian Institute of Chemical Technology, Hyderabad, India
| | - G. Kumar
- Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - N.C. Gangi Reddy
- Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | | |
Collapse
|
20
|
Lou J, Han W, Liu Z, Xiao J. Rhodium-catalyzed enone carbonyl directed C–H activation for the synthesis of indanones containing all-carbon quaternary centers. Org Chem Front 2021. [DOI: 10.1039/d1qo00056j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rhodium(iii)-catalyzed enone carbonyl directed C–H activation/annulation of α-aroyl ketene dithioacetals with diazo compounds has been realized for the synthesis of β-quaternary indanones.
Collapse
Affiliation(s)
- Jiang Lou
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan 250353
- P. R. China
| | - Wenjia Han
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan 250353
- P. R. China
| | - Zhuqing Liu
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan 250353
- P. R. China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan 250353
- P. R. China
| |
Collapse
|
21
|
Dethe DH, C B N, Bhat AA. Cp*Co(III)-Catalyzed Ketone-Directed ortho-C-H Activation for the Synthesis of Indene Derivatives. J Org Chem 2020; 85:7565-7575. [PMID: 32364736 DOI: 10.1021/acs.joc.0c00727] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A weakly coordinating, carbonyl-assisted C-H activation of aromatic systems with α,β-unsaturated ketone and subsequent aldol condensation has been developed using a Cp*Co(CO)I2 catalyst. The developed method is the first example of indene synthesis by cobalt-catalyzed C-H activation. In addition, the reaction requires mild reaction conditions and easily accessible starting materials, and it shows excellent functional group compatibility.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nagabhushana C B
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Arsheed Ahmad Bhat
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
22
|
Bera SS, Maji MS. Carbamates: A Directing Group for Selective C-H Amidation and Alkylation under Cp*Co(III) Catalysis. Org Lett 2020; 22:2615-2620. [PMID: 32207626 DOI: 10.1021/acs.orglett.0c00589] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The selective reactivity of carbamate and thiocarbamate toward alkylation and amidation is reported under stable, high-valent, cost-effective cobalt(III) catalysis. This method reveals the wide possibility of designing a different branch of synthetically challenging yet highly promising asymmetric catalysts based on BINOL and SPINOL scaffolds. Late-stage C-H functionalization of l-tyrosine and estrone was also achieved through this approach. The mechanistic study shows that a base-assisted internal electrophilic substitution mechanism is operative here.
Collapse
Affiliation(s)
- Sourav Sekhar Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|