1
|
Tjallinks G, Boverio A, Jager AW, Kaya SG, Mattevi A, Fraaije MW. Efficient Oxidation of 5-Hydroxymethylfurfural Using a Flavoprotein Oxidase from the Honeybee Apis mellifera. Chembiochem 2023; 24:e202300588. [PMID: 37800383 DOI: 10.1002/cbic.202300588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
The chemical 5-hydroxymethylfurfural (HMF) can be derived from lignocellulose and is an interesting bio-based platform chemical as it has the potential to be transformed into numerous valuable building blocks such as the polymer-precursor 2,5-diformylfuran (DFF). To date, only a few oxidases acting on HMF are known and by sampling atypical species, we discovered a novel flavin-dependent oxidoreductase from the honeybee Apis mellifera (beeHMFO). The enzyme can perform the chemoselective oxidation of HMF to DFF but can also readily accept other aromatic alcohols as substrates. The function of the enzyme may well be the antimicrobial generation of hydrogen peroxide using HMF, which is very abundant in honey. The discovery of this insect-derived flavoprotein oxidase holds promising potential in the synthesis of renewable products and demonstrates that insects can be an interesting source of novel biocatalysts.
Collapse
Affiliation(s)
- Gwen Tjallinks
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen (The, Netherlands
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, Pavia, Italy
| | - Alessandro Boverio
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen (The, Netherlands
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, Pavia, Italy
| | - Amarins W Jager
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen (The, Netherlands
| | - Saniye G Kaya
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen (The, Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, Pavia, Italy
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen (The, Netherlands
| |
Collapse
|
2
|
Recent Advances in Lignocellulose-Based Monomers and Their Polymerization. Polymers (Basel) 2023; 15:polym15040829. [PMID: 36850113 PMCID: PMC9964446 DOI: 10.3390/polym15040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Replacing fossil-based polymers with renewable bio-based polymers is one of the most promising ways to solve the environmental issues and climate change we human beings are facing. The production of new lignocellulose-based polymers involves five steps, including (1) fractionation of lignocellulose into cellulose, hemicellulose, and lignin; (2) depolymerization of the fractionated cellulose, hemicellulose, and lignin into carbohydrates and aromatic compounds; (3) catalytic or thermal conversion of the depolymerized carbohydrates and aromatic compounds to platform chemicals; (4) further conversion of the platform chemicals to the desired bio-based monomers; (5) polymerization of the above monomers to bio-based polymers by suitable polymerization methods. This review article will focus on the progress of bio-based monomers derived from lignocellulose, in particular the preparation of bio-based monomers from 5-hydroxymethylfurfural (5-HMF) and vanillin, and their polymerization methods. The latest research progress and application scenarios of related bio-based polymeric materials will be also discussed, as well as future trends in bio-based polymers.
Collapse
|
3
|
Liu J, Yan Y, Lian M, Song J, Yang Y, Huang G, Wang M, Feng X, Ji W. High-efficiency and durable V-Ti-Nb ternary catalyst prepared by a wet-solid mechanochemical method for sustainably producing acrylic acid via acetic acid-formaldehyde condensation. RSC Adv 2023; 13:1530-1538. [PMID: 36688066 PMCID: PMC9816953 DOI: 10.1039/d2ra06960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023] Open
Abstract
Based on the precise phase control V species adjustment of vanadium phosphorus oxides (VPOs), a series of metal oxides (Nb2O5, MoO3, WO3, and Bi2O3) were selected as modification agents to further enhance the catalytic activity and retain the excellent durability of VPO-TiO2-based catalysts for the new procedure of producing acrylic acid via acetic acid-formaldehyde condensation. At an elevated liquid hourly space velocity (LHSV), the (AA + MA) selectivity reached 92.3% with a (MA + AA) formation rate of 63.8 μmol-1 gcat -1 min-1 over the Nb-decorated catalyst (catalyst VTi-Nb), and it maintained good durability for up to 100 h. The detailed characterization results of XRD, Raman, XPS, NH3-TPD, CO2-TPD, and H2-TPR, demonstrated that the addition of Nb2O5 could observably enhance the catalytic efficiency of the VPO-TiO2 catalyst. It not only improved the catalyst durability by enhancing prereduction of the V5+ species, but also enhanced the active site density to improve the catalytic activity.
Collapse
Affiliation(s)
- Jun Liu
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology Weifang 262700 China
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Youjun Yan
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology Weifang 262700 China
| | - Meng Lian
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology Weifang 262700 China
| | - Jimei Song
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology Weifang 262700 China
| | - Yongqi Yang
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology Weifang 262700 China
| | - Guofu Huang
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology Weifang 262700 China
| | - Miao Wang
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology Weifang 262700 China
| | - Xinzhen Feng
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Weijie Ji
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
4
|
Hoang Tran P. Recent Approaches in the Catalytic Transformation of Biomass-Derived 5-Hydroxymethylfurfural into 2,5-Diformylfuran. CHEMSUSCHEM 2022; 15:e202200220. [PMID: 35307983 DOI: 10.1002/cssc.202200220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The conversion of biomass into a great variety of valuable chemicals, polymers, and fuels gives a sustainable alternative for the insufficiency of non-renewable fossil fuel resources and reduces environmental pollution. 5-Hydroxymethylfurfural (HMF), converted from sustainable carbohydrates, is a significant building block chemical, and the selective oxidation of HMF into 2,5-diformylfuran (DFF) presents an ongoing challenge. DFF is a versatile platform molecule derived from biomass and has promising application in pharmaceuticals and polymers. This Review provides an overview of the latest developments of efficient catalytic systems for the sustainable conversion of HMF to DFF.
Collapse
Affiliation(s)
- Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Faizan M, Zhang R, Liu R. Vanadium Phosphorus Oxide Catalyst: Progress, Development and Applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Jia C, Wang K, Feng Y, Wang X. Efficient aerobic oxidation of 5‐hydroxymethyl‐2‐furfural into 2, 5‐diformylfuran by Cu
2
V
2
O
7
‐Al
2
O
3
spherical beads. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chuanqi Jia
- Tianjin Key Lab of Membrane Science and Desalination Technology, Chemical Engineering Research Center, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Kang Wang
- Tianjin Key Lab of Membrane Science and Desalination Technology, Chemical Engineering Research Center, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Yi Feng
- Tianjin Key Lab of Membrane Science and Desalination Technology, Chemical Engineering Research Center, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Xitao Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology Tianjin University Tianjin China
| |
Collapse
|
7
|
Wang Q, Li Y, Guan H, Yu H, Wang X. Hydroxyapatite-Supported Polyoxometalates for the Highly Selective Aerobic Oxidation of 5-Hydroxymethylfurfural or Glucose to 2,5-Diformylfuran under Atmospheric Pressure. Chempluschem 2021; 86:997-1005. [PMID: 34232576 DOI: 10.1002/cplu.202100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/27/2021] [Indexed: 11/07/2022]
Abstract
(NH4 )5 H6 PV8 Mo4 O40 supported on hydroxyapatite (HAP) (PMo4 V8 /HAP (n)) was prepared through the ion exchange of hydroxy groups. This ion exchange favored the oxidative conversion of 5-hydroxymethylfurfural (5-HMF) to 2,5-diformylfuran (DFF) in a one-pot cascade reaction with 96.0 % conversion and 83.8 % yield under 10 mL/min of O2 flow. PMo4 V8 /HAP (31) was used to explore the production of DFF directly from glucose with the highest yield of 47.9 % so far under atmospheric oxygen, whereas the yield of DFF increased to 54.7 % in a one-pot and two-step reaction. These results indicated that the active sites in PMo4 V8 /HAP (31) retained their activities without any interference toward one another, which enabled the production of DFF in a more cost-saving way by only using oxygen and one catalyst in a one-step reaction. Meanwhile, the rigid structure of HAP and strong interaction in PMo4 V8 /HAP (31) allowed this catalyst to be reused for at least six times with high stability and duration.
Collapse
Affiliation(s)
- Qiwen Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ying Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hongyu Guan
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangdong, 510006, P. R. China
| | - Hang Yu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaohong Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
8
|
Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran using manganese dioxide with different crystal structures: A comparative study. J Colloid Interface Sci 2021; 592:416-429. [PMID: 33691223 DOI: 10.1016/j.jcis.2021.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Aerobic oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-Diformylfuran (DFF) using O2 gas represents a sustainable approach for valorization of lignocellulosic compounds. As manganese dioxide (MnO2) is validated as a useful oxidation catalyst and many crystalline forms of MnO2 exist, it is critical to explore how the crystalline structures of MnO2 influence their physical/chemical properties, which, in turn, determine catalytic activities of MnO2 crystals for HMF oxidation to DFF. In particular, six MnO2 crystals, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, ε-MnO2, and λ-MnO2 are prepared and investigated for their catalytic activities for HMF oxidation to DFF. With different morphologies and crystalline structures, these MnO2 crystals possess very distinct surficial chemistry, redox capabilities, and textural properties, making these MnO2 exhibit different catalytic activities towards HMF conversion. Especially, β-MnO2 can produce much higher DFF per surface area than other MnO2 crystals. β-MnO2 could achieve the highest CHMF = 99% and YDFF = 97%, which are much higher than the reported values in literature, possibly because the surficial reactivity of β-MnO2 appears to be highest in comparison to other MnO2 crystals. Especially, β-MnO2 could exhibit YDFF > 90% over 5 cycles of reusability test, and maintain its crystalline structure, revealing its advantageous feature for aerobic oxidation of HMF to DFF. Through this study, the relationship between morphology, surface chemistry, and catalytic activity of MnO2 with different crystal forms is elucidated for providing scientific insights into design, application and development of MnO2-based materials for aerobic oxidation of bio-derived molecules to value-added products.
Collapse
|
9
|
Kumar A, Bal R, Srivastava R. Modulation of Ru and Cu nanoparticle contents over CuAlPO-5 for synergistic enhancement in the selective reduction and oxidation of biomass-derived furan based alcohols and carbonyls. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00593f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu–Ru NP decorated CuAlPO-5 catalysts with low contents of Ru exhibit excellent activity and selectivity in the reduction and the oxidation of biomass-derived platform chemicals.
Collapse
Affiliation(s)
- Abhinav Kumar
- Catalysis Research Laboratory
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| | - Rajaram Bal
- Nanocatalysis Area Conversion and Catalysis Division
- CSIR-Indian Institute of Petroleum
- Dehradun
- India
| | - Rajendra Srivastava
- Catalysis Research Laboratory
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| |
Collapse
|
10
|
Phosphorus-Doped Carbon Supported Vanadium Phosphate Oxides for Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran. Processes (Basel) 2020. [DOI: 10.3390/pr8101273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
2,5-diformylfuran (DFF) is an important downstream product obtained by selective oxidation of the biomass-based platform compound 5-hydroxymethylfurfural (HMF). In this study, a phosphorus-doped carbon (P-C) supported vanadium phosphate oxide (VPO) catalyst was successfully prepared and showed remarkably high catalytic activity in the selective oxidation of HMF to produce DFF with air as an oxidant. The effects of the reaction temperature, reaction time, solvent, catalyst amount, and VPO loading amount were investigated. The results showed that an HMF conversion rate of 100% and a DFF yield of 97.0% were obtained under suitable conditions, and DMSO was found to be the most suitable solvent under an air atmosphere.
Collapse
|
11
|
Direct production of 2,5-diformylfuran from fructose catalysed by Mo-based composite oxides in static air. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Raut AB, Shende VS, Bhanage BM. The one-step transformation of fructose to 2,5-diformylfuran over Ru metal supported on montmorillonite. NEW J CHEM 2020. [DOI: 10.1039/c9nj06275k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ruthenium metal supported on a montmorillonite (2 wt% Ru-MMT) catalyst have been synthesized and characterized. Catalyst found to be effective for the one-pot transformation of fructose to DFF showing an excellent yield with good recyclability.
Collapse
Affiliation(s)
- Amol B. Raut
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai
- India
| | | | | |
Collapse
|
13
|
Efficient and Selective Oxidation of 5-Hydroxymethylfurfural into 2, 5-Diformylfuran Catalyzed by Magnetic Vanadium-Based Catalysts with Air as Oxidant. Catal Letters 2019. [DOI: 10.1007/s10562-019-03041-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Lin JY, Yuan MH, Lin KYA, Lin CH. Selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran catalyzed by Cu-based metal organic frameworks with 2,2,6,6-tetramethylpiperidin-oxyl. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|