1
|
Zhu X, Qin F, He L, Jiao Y, Feng W. Enhanced Photocatalytic Activity of Anatase/Rutile Heterojunctions by Lanthanum and Tin Co-Doping. Int J Mol Sci 2022; 23:11339. [PMID: 36232637 PMCID: PMC9569733 DOI: 10.3390/ijms231911339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Anatase/rutile heterojunctions were prepared using the sol-gel method and modified by La/Sn single doping and co-doping. Sn doping promoted the transformation from anatase to rutile, while La doping inhibited the phase transformation. La and Sn co-doping showed an inhibitory effect. The co-doping of La and Sn did not increase visible-light absorption, but exhibited a synergistic effect on inhibiting the recombination of photogenerated electrons and holes, which improved the photocatalytic activity on the basis of single-element modification. The first-order reaction rate constant of La/Sn co-doped sample was 0.027 min-1, which is 1.8 times higher than that of pure TiO2 (0.015 min-1). Meanwhile, the mechanism of photodegradation of methylene blue (MB) by La/Sn co-doped anatase/rutile heterojunctions was discussed through electrochemical measurements and free-radical trapping experiments.
Collapse
Affiliation(s)
- Xiaodong Zhu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Fengqiu Qin
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Lili He
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Yu Jiao
- School of Science, Xichang University, Xichang 615013, China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
2
|
Yin Z, Zhang Q, Li S, Cagnetta G, Huang J, Deng S, Yu G. Mechanochemical synthesis of catalysts and reagents for water decontamination: Recent advances and perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153992. [PMID: 35192815 DOI: 10.1016/j.scitotenv.2022.153992] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
This paper aims to provide insights on mechanochemistry as a green and versatile tool to synthesize advanced materials for water remediation. In particular, mechanochemical methodologies for preparation of reagents and catalysts for the removal of organic pollutants are reviewed and discussed, focusing on those materials that, directly or indirectly, induce redox reactions in the contaminants (i.e., photo-, persulfate-, ozone-, and Fenton-catalysts, as well as redox reagents). Methods reported in the literature include surface reactivity enhancement for single-component materials, as well as multi-component material design to obtain synergistic effects in catalytic efficiency and/or reactivity. It was also amply demonstrated that mechanochemical surface activation or the incorporation of catalytic/reactive components boost the generation of reactive species in water by accelerating charge transfer, increasing superficial active sites, and developing pollutant absorption. Finally, indications for potential future developments in this field are debated.
Collapse
Affiliation(s)
- Zhou Yin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Qianxin Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Shangyi Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Giovanni Cagnetta
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China.
| | - Shubo Deng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Zhu X, Qin F, Xia Y, Yang D, Feng W, Jiao Y. Three-Phase Mixed Titania Powder Modified by Silver and Silver Chloride with Enhanced Photocatalytic Activity under UV-Visible Light. NANOMATERIALS 2022; 12:nano12091599. [PMID: 35564308 PMCID: PMC9100623 DOI: 10.3390/nano12091599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022]
Abstract
Pure and Ag/AgCl-modified titania powders with anatase/rutile/brookite three-phase mixed structure were prepared by one-step hydrothermal method. The effects of Ag/Ti atomic percentages on the structure and photocatalytic performance of TiO2 were investigated. The results showed that pure TiO2 consisted of three phases, anatase, rutile, and brookite, and that Ag addition promoted the transformation from anatase to rutile. When the molar ratio of Ag/Ti reached 4%, the AgCl phase appeared. The addition of Ag had little effect on the optical absorption of TiO2; however, it did favor the separation of photogenerated electrons and holes. The results of photocatalytic experiments showed that after Ag addition, the degradation degree of rhodamine B (RhB) was enhanced. When the molar ratio of Ag/Ti was 4%, Ag/AgCl-modified TiO2 exhibited the highest activity, and the first-order reaction rate constant was 1.67 times higher than that of pure TiO2.
Collapse
Affiliation(s)
- Xiaodong Zhu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (X.Z.); (F.Q.); (Y.X.); (D.Y.)
| | - Fengqiu Qin
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (X.Z.); (F.Q.); (Y.X.); (D.Y.)
| | - Yangwen Xia
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (X.Z.); (F.Q.); (Y.X.); (D.Y.)
| | - Daixiong Yang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (X.Z.); (F.Q.); (Y.X.); (D.Y.)
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (X.Z.); (F.Q.); (Y.X.); (D.Y.)
- Correspondence: (W.F.); (Y.J.)
| | - Yu Jiao
- School of Science, Xichang University, Xichang 615000, China
- Correspondence: (W.F.); (Y.J.)
| |
Collapse
|
4
|
Tang M, Xia Y, Yang D, Lu S, Zhu X, Tang R, Zhang W. Ag Decoration and SnO 2 Coupling Modified Anatase/Rutile Mixed Crystal TiO 2 Composite Photocatalyst for Enhancement of Photocatalytic Degradation towards Tetracycline Hydrochloride. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:873. [PMID: 35269361 PMCID: PMC8912704 DOI: 10.3390/nano12050873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023]
Abstract
The anatase/rutile mixed crystal TiO2 was prepared and modified with Ag decoration and SnO2 coupling to construct a Ag@SnO2/anatase/rutile composite photocatalytic material. The crystal structure, morphology, element valence, optical properties and surface area were characterized, and the effects of Ag decoration and SnO2 coupling on the structure and photocatalytic properties of TiO2 were studied. Ag decoration and SnO2 coupling are beneficial to reduce the recombination of photogenerated electrons and holes. When the two modification are combined, a synergistic effect is produced in suppressing the photogenerated charge recombination, making Ag@SnO2/TiO2 exhibits the highest quantum utilization. After 30 min of illumination, the degradation degree of tetracycline hydrochloride (TC) by pure TiO2 increased from 63.3% to 83.1% with Ag@SnO2/TiO2.
Collapse
Affiliation(s)
- Mao Tang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.T.); (Y.X.); (D.Y.); (S.L.)
- Sichuan Province Engineering Technology Research Center of Powder Metallurgy, Chengdu 610106, China
| | - Yangwen Xia
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.T.); (Y.X.); (D.Y.); (S.L.)
| | - Daixiong Yang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.T.); (Y.X.); (D.Y.); (S.L.)
| | - Shiji Lu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.T.); (Y.X.); (D.Y.); (S.L.)
| | - Xiaodong Zhu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.T.); (Y.X.); (D.Y.); (S.L.)
- Sichuan Province Engineering Technology Research Center of Powder Metallurgy, Chengdu 610106, China
| | - Renyong Tang
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Wanming Zhang
- School of Resources and Environment, Xichang University, Xichang 615000, China
| |
Collapse
|