1
|
Fang JJ, Shen LM. Compression Property of TPEE-3D Fibrous Material and Its Application in Mattress Structural Layer. Polymers (Basel) 2023; 15:3681. [PMID: 37765535 PMCID: PMC10536679 DOI: 10.3390/polym15183681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Thermoplastic poly(ether/ester) elastomer (TPEE) has great potential as a mattress material due to its high resilience, breathability, and light weight. This study aimed to evaluate the feasibility of TPEE-3D fibrous material (T3DF), a three-dimensional block material made of TPEE fibers randomly aligned and loop-connected, for mattress application. After testing the compression properties of T3DF, the effects of T3DF structural layers on mattress firmness were investigated. The results showed that T3DF had good energy absorption capacity, broad indentation hardness range (126.94-333.82 N), and high compression deflection coefficient (2.79-4.39). The thickness and density of T3DF were the main factors influencing mattress firmness, and the impact of thickness was more significant (p < 0.05). Owing to the hard and soft segments contained in TPEE, T3DF could be used for both the padding and core layers of the mattress. The hardness value and Dsurface of the mattress with a T3DF padding layer increased with T3DF density but decreased with T3DF thickness. Moreover, the hardness value and Dsurface of the mattress with a T3DF core layer increased with T3DF density, while with T3DF thickness, its Dsurface increased and Dbottom decreased. Therefore, the thick and low-density T3DF padding layer could improve the comfort of the mattress surface, a thin T3DF core layer could satisfy both the softer surface and the firmer bottom of the mattress.
Collapse
Affiliation(s)
- Jiao-Jiao Fang
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China;
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Li-Ming Shen
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China;
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Yadav A, de Souza FM, Dawsey T, Gupta RK. Recent Advancements in Flame-Retardant Polyurethane Foams: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Anilkumar Yadav
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Felipe M. de Souza
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Tim Dawsey
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Ram K. Gupta
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, Kansas 66762, United States
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| |
Collapse
|
3
|
Wang L, Liu X, Qi P, Sun J, Jiang S, Li H, Gu X, Zhang S. Enhancing the thermostability, UV shielding and antimicrobial activity of transparent chitosan film by carbon quantum dots containing N/P. Carbohydr Polym 2022; 278:118957. [PMID: 34973773 DOI: 10.1016/j.carbpol.2021.118957] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/28/2021] [Indexed: 11/15/2022]
Abstract
The chitosan (CS) transparent film has attracted much attention in food and medicine packaging areas due to their biodegradability and good availability. A novel carbon quantum dots compound containing nitrogen and phosphorus (NP-CQDs) was obtained by reacting citric acids, with urea and phytic acids. The density of the film was increased, and the water vapor permeation was reduced by the presence of NP-CQDs. The introduction of 4 wt% NP-CQDs increased the water contact angle of the CS film from 79.2° to 105.8°. The shielding on UV-A and UV-B transmittance was increased with the NP-CQDs loading. The film containing 4 wt% NP-CQDs blocked more than 90.2% UV-A and 96.5% UV-B; however, it only blocked 26.8% visible light. It also exhibited better antibacterial activity to both E. coli and S. aureus than the control CS film. This work provided a feasible way to prepare multifunctional bio-safe film.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaodong Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengling Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Zhang S, Chu F, Xu Z, Zhou Y, Qiu Y, Qian L, Hu Y, Wang B, Hu W. The improvement of fire safety performance of flexible polyurethane foam by Highly-efficient P-N-S elemental hybrid synergistic flame retardant. J Colloid Interface Sci 2022; 606:768-783. [PMID: 34419816 DOI: 10.1016/j.jcis.2021.08.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Herein, three different phosphorus-containing compounds (methyl phosphoryl dichloride, phenyl phosphoryl dichloride and phenyl dichlorophosphate) were reacted with 2-aminobenzothiazole respectively, and a series of synergistic flame retardants with phosphorus, nitrogen and sulfur elements were synthesized, named MPBT, PPBT and POBT respectively. Then, they were added to prepare flame-retardant flexible polyurethane foam (FPUF). Through the analysis of thermal stability, pyrolysis, heat release and smoke release behavior, the influence of different phosphorus-containing structures on the flame-retardant performance of FPUF was studied, and their flame-retardant mechanism was explored in detail. Among them, MPBT had the highest flame retardant efficiency with the same addition amount (10 wt%). The limiting oxygen index (LOI) value of PU/10.0% MPBT reached 22.5 %, and it successfully passed the vertical burning test. Subsequently, the addition amount of MPBT was increased and the best comprehensive performance of flame-retardant FPUF was explored. The results showed that the LOI value of PU/15.0% MPBT was increased to 23.5%. As for PU/15.0% MPBT, the peak heat release rate (PHRR) was 453 KW/m2, which was reduced by 46.64 %; and the flame retardancy index (FRI) value was also increased to 6.88. At the same time, the mechanical properties of flame-retardant FPUF were studied. The tensile strength of PU/15.0% MPBT reached 170 KPa, and the permanent deformation of FPUF/10% MPBT was only 4 %, showing its excellent resilience. The above results show that this phosphorus-containing element hybrid synergistic flame retardant (MPBT) has a very good application prospect in the field of flame-retardant polymer materials.
Collapse
Affiliation(s)
- Shenghe Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China
| | - Fukai Chu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhoumei Xu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China
| | - Yifan Zhou
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China
| | - Yong Qiu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China
| | - Lijun Qian
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China
| | - Bibo Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China.
| | - Weizhao Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
6
|
Pan Y, Cai W, Du J, Song L, Hu Y, Zhao H. Lanthanum phenylphosphonate–based multilayered coating for reducing flammability and smoke production of flexible polyurethane foam. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ying Pan
- Institute of Environmental Materials and Applications, College of Materials and Environmental EngineeringHangzhou Dianzi University Hangzhou China
| | - Wei Cai
- State Key Laboratory of Fire ScienceUniversity of Science and Technology of China Hefei China
| | - Jia Du
- Institute of Environmental Materials and Applications, College of Materials and Environmental EngineeringHangzhou Dianzi University Hangzhou China
| | - Lei Song
- State Key Laboratory of Fire ScienceUniversity of Science and Technology of China Hefei China
| | - Yuan Hu
- State Key Laboratory of Fire ScienceUniversity of Science and Technology of China Hefei China
| | - Hongting Zhao
- Institute of Environmental Materials and Applications, College of Materials and Environmental EngineeringHangzhou Dianzi University Hangzhou China
| |
Collapse
|