1
|
Tan C, Yan X, Lu X, Wang J, Yi X. Dual-mode colorimetric and fluorescence detection of BRCA1 based on a CRISPR-Cas12a system. Analyst 2024. [PMID: 39171896 DOI: 10.1039/d4an01035c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Breast cancer, the most common malignant tumor in the world, seriously threatens human life and health. Early diagnosis of breast cancer may help enhance the survival rate. In this work, a colorimetric and fluorescent dual-mode biosensor based on the CRISPR-Cas12a system was constructed to detect the breast cancer biomarker BRCA1. The intact G4 DNA, with the assistance of K+ and hemin, catalyses the oxidation of o-phenylenediamine (OPD) with the assistance of hydrogen peroxide (H2O2), generating the oxidation product 2,3-diaminophenazine (DAP), which has distinct absorption and fluorescence peaks. The presence of the target BRCA1 activates the trans-cleavage activity of CRISPR-Cas12a, leading to the cleavage of G4 DNA and inhibiting the catalytic oxidation of OPD. Target BRCA1 was quantitatively determined by measuring both the absorbance and fluorescence intensity of DAP. The detection limits were calculated to be 0.615 nM for the colorimetric method and 0.289 nM for the fluorescence method. The dual-mode biosensor showed good selectivity and reliability for BRCA1 and can resist interference from complex substrates, and it has great potential in biomedical detection.
Collapse
Affiliation(s)
- Chengchen Tan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Xiaolong Yan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Xingchang Lu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Xinyao Yi
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| |
Collapse
|
2
|
Wu Z, Zheng H, Bian Y, Weng J, Zeng R, Sun L. A quadratic isothermal amplification fluorescent biosensor without intermediate purification for ultrasensitive detection of circulating tumor DNA. Analyst 2024; 149:3396-3404. [PMID: 38712742 DOI: 10.1039/d4an00460d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Circulating tumor DNA (ctDNA) is an auspicious tumor biomarker released into the bloodstream by tumor cells, offering abundant information concerning cancer genes. It plays a crucial role in the early diagnosis of cancer. However, due to extremely low levels in body fluids, achieving a simple, sensitive, and highly specific detection of ctDNA remains challenging. Here, we constructed a purification-free fluorescence biosensor based on quadratic amplification of ctDNA by combining nicking enzyme mediated amplification (NEMA) and catalytic hairpin assembly (CHA) reactions. After double isothermal amplification, this biosensor achieved an impressive signal amplification of nearly 107-fold, enabling it to detect ctDNA with ultra-sensitivity. And the detection limit of this biosensor is as low as 2 aM. In addition, we explored the influence of human serum on the performance of the biosensor and found that it showed favorable sensitivity in the presence of serum. This biosensor eliminates the need for an intermediate purification step, resulting in enhanced sensitivity and convenience. Thus, our purification-free fluorescent biosensor exhibits ultra-high sensitivity when compared to other biosensors and has the potential to serve as an effective diagnostic tool for early detection of cancer.
Collapse
Affiliation(s)
- Zhaojie Wu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China.
| | - Hongshan Zheng
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China.
| | - Yongjun Bian
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China.
| | - Jian Weng
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China.
| | - Ru Zeng
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Liping Sun
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China.
| |
Collapse
|
3
|
Ma H, Chen L, Lv J, Yan X, Li Y, Xu G. The rate-limiting procedure of 3D DNA walkers and their applications in tandem technology. Chem Commun (Camb) 2023; 59:10330-10342. [PMID: 37615403 DOI: 10.1039/d3cc02597g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
DNA walkers, artificial dynamic DNA nanomachines, can mimic actin to move rapidly along a predefined nucleic acid track. They can generally be classified as one- (1D), two- (2D), and three-dimensional (3D) DNA walkers. In particular, 3D DNA walkers demonstrate amazing sustainable walking ability, strong enrichment ability, and fantastic signal amplification ability. In light of these, 3D DNA walkers have been widely used in fields such as biosensors, bioanalysis and cell imaging. Most notably, the strong compatibility of 3D DNA walkers allows their integration with a range of amplification strategies, effectively enhancing signal transduction and amplifying biosensor sensing signals. Herein, we first systematically expound the walking principle of the 3D walkers in this review. Then, by presenting representative examples, the research direction of 3D walkers in recent years is discussed. Furthermore, we also categorize and evaluate diverse tandem signal amplification strategies in 3D walkers. Finally, the challenges and development trends of 3D DNA walkers in the emerging field of analysis are carefully discussed. It is believed that this work can provide new ideas for researchers to quickly understand 3D DNA walkers and their applications in diverse biosensors.
Collapse
Affiliation(s)
- Hongmin Ma
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| | - Long Chen
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| | - Jingnan Lv
- The Second Affiliated People's Hospital of Soochow University, Suzhou 215008, China
| | - Xiaoyu Yan
- Guang'an Vocational & Technical College, Sichuan 638000, China
| | - Yonghao Li
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| | - Guoxin Xu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| |
Collapse
|
4
|
Zhang Z, Yao J, Huang X, Zhang L, Wang T, Weng Z, Xie G. Multiplex real-time PCR using double-strand primers and probes for the detection of nucleic acids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5392-5396. [PMID: 33111715 DOI: 10.1039/d0ay01661f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multiplex PCR encounters difficulties in primer designing with all the primer pairs working at the same annealing temperature. In this study, we have developed a double-strand primer-mediated multiple strand displacement reaction for the detection of SARS-COV-2 ORF, N and E genes (as examples). The double primer is composed of a 5'-modified fluorophore strand, which does not impact polymerase extension and a 3'-modified quencher strand, which cannot impact elongation. At the annealing temperature, the fluorophore strand combined with the template, extended and resulted in fluorescence signal release. Results showed that the double-strand primer relatively exhibits a wide annealing temperature range and good compatibility between three pairs of primers and probes. These merits allow the simple and multiplex real-time fluorescence quantification of nucleic acids. The detection limit was 400 copies/mL, and the detection time was approximately 2 h. In addition to its extreme specificity and simplicity, this method has a wide range of applications such as multiple PCR and SNP detection.
Collapse
Affiliation(s)
- Zhang Zhang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Yan Q, Duan Q, Huang Y, Guo J, Zhong L, Wang H, Yi G. Symmetric exponential amplification reaction-based DNA nanomachine for the fluorescent detection of nucleic acids. RSC Adv 2019; 9:41305-41310. [PMID: 35540087 PMCID: PMC9076420 DOI: 10.1039/c9ra08854g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/28/2019] [Indexed: 11/21/2022] Open
Abstract
By introducing palindromic sequences into the classical exponential amplification reaction (EXPAR), we constructed a new palindromic fragment-incorporated multifunctional hairpin probe (P-HP)-mediated symmetric exponential amplification reaction (S-EXPAR), to significantly reduce the background signal caused by inherent nonspecific amplification. A G-triplex/ThT complex was used as the signal reporter for the proposed label-free DNA nanomachine. The P-HP consists of five functional regions: a C-rich region (C), a target DNA recognition region (T′), two nicking sites (X′) and a palindromic fragment (P). When target DNA (T) hybridizes with P-HP, the palindromic fragment at the 3′ end of P-HP is fully exposed. Then, the P-HP/T duplexes hybridize with each other through the exposed P, and EXPAR occurs automatically and continuously on both sides of P under the synergistic effect of polymerase and nicking endonuclease. This is called the S-EXPAR assay. In this system, one T converts to a large number of G-triplex fragments, which can combine with ThT within a short time. The G-triplex/ThT complexes formed act as the signal reporter in a label-free and environmentally friendly format. In this way, the limit of detection of this method is as low as 10 pM with a dynamic response range of 10 pM to 300 nM. In addition, this method can detect other nucleic acids by simply changing the T′ region of the P-HP. Thus, the proposed DNA nanomachine is a potential alternative method for nucleic acid detection. This label-free and ultra-low background signal DNA nanomachine was based on P-HP mediated S-EXPAR and the G-triplex/ThT complex.![]()
Collapse
Affiliation(s)
- Qi Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China)
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing
- P. R. China
| | - Qiuyue Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China)
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing
- P. R. China
| | - Yuqi Huang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China)
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing
- P. R. China
| | - Jing Guo
- Department of Clinical Laboratory
- Qingdao Municipal Hospital
- Qingdao
- P. R. China
| | - Liang Zhong
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China)
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing
- P. R. China
| | - Hong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China)
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing
- P. R. China
| | - Gang Yi
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China)
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing
- P. R. China
| |
Collapse
|