1
|
Li Z, Zhang Q, Yang J, Li Y, Cui J, Ma Y, Yang C. Fabrication of wide temperature Fe xCe 1-xVO 4 modified TiO 2-graphene catalyst with excellent NH 3-SCR performance and strong SO 2/H 2O tolerance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53259-53268. [PMID: 35278188 DOI: 10.1007/s11356-022-18774-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Selective catalytic reduction of NO with NH3 (NH3-SCR) is one of the most common technique for elimination of NOx. The promotional effect of Fe additive on the NH3-SCR activity of the CeVO4/TiO2-graphene (GE) is systematically studied. The results exhibited that the low-temperature NOx conversion could be enhanced dramatically via the addition of Fe and Fe0.5Ce0.5VO4/TiO2-GE displayed the highest conversion of NOx in the wide temperature window (200-400 °C). It is because that Fe3+ + Ce3+ ↔ Fe2+ + Ce4+ facilitated the oxidization of NO to NO2 at low temperature and led to the "Fast SCR," thereby raising the SCR performance. What is more, the introduction of Fe enhanced redox ability, the surface relative percentage of Ce3+, V5+ and the chemical adsorbed oxygen. Furthermore, the high surface concentration of Ce3+ species can produce more active oxygen and leads to the "Fast SCR" reaction. In addition, the Fe0.5Ce0.5VO4/TiO2-GE catalyst showed excellent H2O/SO2 tolerance, which may be due to the decomposition of ammonium bisulphite under high temperature and the hydrophobicity of graphene. What is more, it displayed outstanding the stability. This work would provide theoretical reference for the practical application of NOx abatement via NH3-SCR.
Collapse
Affiliation(s)
- Zhifang Li
- College of Materials Science and Engineering, Qiqihar University, Wenhua Street 42, Qiqihar, 161006, China
- Heilongjiang Province Key Laboratory of Polymeric Composite Material, Qiqihar University, Wenhua Street 42, Qiqihar, 161006, China
| | - Qian Zhang
- College of Materials Science and Engineering, Qiqihar University, Wenhua Street 42, Qiqihar, 161006, China
| | - Jian Yang
- College of Materials Science and Engineering, Qiqihar University, Wenhua Street 42, Qiqihar, 161006, China
| | - Yueyu Li
- College of Materials Science and Engineering, Qiqihar University, Wenhua Street 42, Qiqihar, 161006, China
| | - Jinxing Cui
- College of Materials Science and Engineering, Qiqihar University, Wenhua Street 42, Qiqihar, 161006, China.
- Heilongjiang Province Key Laboratory of Polymeric Composite Material, Qiqihar University, Wenhua Street 42, Qiqihar, 161006, China.
- College of Materials Science and Engineering, Graphene Functional Materials Research Laboratory, Qiqihar University, Wenhua Street 42, Qiqihar, 161006, China.
| | - Yuanyuan Ma
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Changlong Yang
- College of Materials Science and Engineering, Qiqihar University, Wenhua Street 42, Qiqihar, 161006, China.
- Heilongjiang Province Key Laboratory of Polymeric Composite Material, Qiqihar University, Wenhua Street 42, Qiqihar, 161006, China.
| |
Collapse
|
2
|
Wu S, Zhao H, Tang Z, Zhang J. Fabrication of a multi-dimensional CoFeO x catalyst for the efficient catalytic oxidation elimination of o-dichlorobenzene. NEW J CHEM 2022. [DOI: 10.1039/d2nj01976k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-dimensional CoFeOx/CoOx with a 2D/1D structure exhibited outstanding catalytic activity and thermal stability in the catalytic elimination of o-DCB.
Collapse
Affiliation(s)
- Shixing Wu
- School of Petroleum and Chemical, Lanzhou University of Technology, Lanzhou 730050, China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Haijun Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264006, China
| | - Zhicheng Tang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264006, China
| | - Jiyi Zhang
- School of Petroleum and Chemical, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
3
|
Eid A, Rahman MA, Al-Abadleh HA. Mechanistic studies on the conversion of NO gas on urea-iron and copper metal organic frameworks at low temperature conditions: in situ infrared spectroscopy and Monte Carlo investigations. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrogen oxide (NOx) emissions from high-temperature combustion processes under fuel-lean conditions continue to be a challenge for the energy industry. Selective catalytic reduction (SCR) is possible using metal oxides and zeolites. There is still a need to identify catalytic materials that are efficient in reducing NOx to environmentally benign nitrogen gas at temperatures lower than 200 °C. Metal-organic frameworks (MOFs) have emerged as a class of highly porous materials with unique physical and chemical properties. This study is motivated by the lack of systematic investigations on SCR using MOFs under industrially relevant conditions. Here, we investigate the extent of NO conversion with two commercially available MOFs, Basolite F300 (Fe-BTC) and HKUST-1 (Cu-BTC), mixed with solid urea as a source for the reductant, ammonia gas. For comparison, experiments were also conducted using cobalt ferrite (CoFe2O4) as a non-porous counterpart to relate its reactivity to those obtained from MOFs. Fourier-transform infrared spectroscopy (FTIR) was utilized to identify the gas and surface species in the temperature range of 115–180 °C. Computational analysis was performed using Monte Carlo simulations to quantify the adsorption energies of different surface species. The results show that the rate of ammonia production from the in situ solid urea decomposition was higher using CoFe2O4 than Fe-BTC and Cu-BTC and that there was very limited conversion of NO on the mixed solid urea-MOF systems due to site blocking. The main conclusions from this study are that MOFs have limited ability to convert NO under low-temperature conditions and that surface regeneration requires additional experimental steps.
Collapse
Affiliation(s)
- A.M. Eid
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Mohammad A. Rahman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Hind A. Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
4
|
Majumder M, Saini H, Dědek I, Schneemann A, Chodankar NR, Ramarao V, Santosh MS, Nanjundan AK, Kment Š, Dubal D, Otyepka M, Zbořil R, Jayaramulu K. Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia. ACS NANO 2021; 15:17275-17298. [PMID: 34751563 DOI: 10.1021/acsnano.1c08455] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The conversion of nitrogen to ammonia offers a sustainable and environmentally friendly approach for producing precursors for fertilizers and efficient energy carriers. Owing to the large energy density and significant gravimetric hydrogen content, NH3 is considered an apt next-generation energy carrier and liquid fuel. However, the low conversion efficiency and slow production of ammonia through the nitrogen reduction reaction (NRR) are currently bottlenecks, making it an unviable alternative to the traditional Haber-Bosch process for ammonia production. The rational design and engineering of catalysts (both photo- and electro-) represent a crucial challenge for improving the efficiency and exploiting the full capability of the NRR. In the present review, we highlight recent progress in the development of graphene-based systems and graphene derivatives as catalysts for the NRR. Initially, the history, fundamental mechanism, and importance of the NRR to produce ammonia are briefly discussed. We also outline how surface functionalization, defects, and hybrid structures (single-atom/multiatom as well as composites) affect the N2 conversion efficiency. The potential of graphene and graphene derivatives as NRR catalysts is highlighted using pertinent examples from theoretical simulations as well as machine learning based performance predictive methods. The review is concluded by identifying the crucial advantages, drawbacks, and challenges associated with principal scientific and technological breakthroughs in ambient catalytic NRR.
Collapse
Affiliation(s)
- Mandira Majumder
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu, Jammu & Kashmir 181221, India
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu, Jammu & Kashmir 181221, India
| | - Ivan Dědek
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Andreas Schneemann
- Lehrstuhl für Anorganische Chemie I, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
| | - Nilesh R Chodankar
- Department of Energy & Materials Engineering, Dongguk University, Seoul 100-715, South Korea
| | - Viswanatha Ramarao
- Centre for Incubation, Innovation, Research and Consultancy (CIIRC) and Department of Chemistry, Jyothy Institute of Technology, Thataguni, Off Kanakpura Road, Bangalore, Karnataka 560082, India
| | - Mysore Sridhar Santosh
- Centre for Incubation, Innovation, Research and Consultancy (CIIRC) and Department of Chemistry, Jyothy Institute of Technology, Thataguni, Off Kanakpura Road, Bangalore, Karnataka 560082, India
- CSIR-Central Institute of Mining & Fuel Research, Digwadih Campus, PO FRI, Dhanbad, Jharkhand 828 108, India
| | - Ashok Kumar Nanjundan
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4001, Australia
| | - Štěpán Kment
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Deepak Dubal
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4001, Australia
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- IT4Innovations, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu, Jammu & Kashmir 181221, India
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
5
|
Cheng S, Shao J, Huang B, Guan J, Zhou L. Promotion effect of urchin-like MnO x @PrO x hollow core-shell structure catalysts for the low-temperature selective catalytic reduction of NO with NH 3. RSC Adv 2020; 10:13855-13865. [PMID: 35493013 PMCID: PMC9051569 DOI: 10.1039/d0ra00668h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/02/2020] [Indexed: 11/21/2022] Open
Abstract
A MnOx@PrOx catalyst with a hollow urchin-like core–shell structure was prepared using a sacrificial templating method and was used for the low-temperature selective catalytic reduction of NO with NH3. The structural properties of the catalyst were characterized by FE-SEM, TEM, XRD, BET, XPS, H2-TPR and NH3-TPD analyses, and the performance of the low-temperature NH3-SCR was also tested. The results show that the catalyst with a molar ratio of Pr/Mn = 0.3 exhibited the highest NO conversion at nearly 99% at 120 °C and NO conversion greater than 90% over the temperature range of 100–240 °C. Also, the MnOx@PrOx catalyst presented desirable SO2 and H2O resistance in 100 ppm SO2 and 10 vol% H2O at the space velocity of 40 000 h−1 and a testing time of 3 h test at 160 °C. The excellent low-temperature catalytic activity of the catalyst could ultimately be attributed to high concentrations of Mn4+ and adsorbed oxygen species on the catalyst surface, suitable Lewis acidic surface properties, and good reducing ability. Additionally, the enhanced SO2 and H2O resistance of the catalyst was primarily ascribed to its unique core–shell structure which prevented the MnOx core from being sulfated. A MnOx@PrOx catalyst with a hollow urchin-like core–shell structure was prepared using a sacrificial templating method and was used for the low-temperature selective catalytic reduction of NO with NH3.![]()
Collapse
Affiliation(s)
- Shuyuan Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou 510006 P. R. China
| | - Jing Shao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou 510006 P. R. China
| | - Bichun Huang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou 510006 P. R. China .,Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou 510006 P. R. China.,The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou 510006 P. R. China
| | - Jinkun Guan
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou 510006 P. R. China
| | - Lusha Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou 510006 P. R. China
| |
Collapse
|