1
|
Pouroutzidou GK, Papadopoulou L, Lazaridou M, Tsachouridis K, Papoulia C, Patsiaoura D, Tsamesidis I, Chrissafis K, Vourlias G, Paraskevopoulos KM, Anastasiou AD, Bikiaris DN, Kontonasaki E. Composite PLGA–Nanobioceramic Coating on Moxifloxacin-Loaded Akermanite 3D Porous Scaffolds for Bone Tissue Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030819. [PMID: 36986685 PMCID: PMC10053907 DOI: 10.3390/pharmaceutics15030819] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Silica-based ceramics doped with calcium and magnesium have been proposed as suitable materials for scaffold fabrication. Akermanite (Ca2MgSi2O7) has attracted interest for bone regeneration due to its controllable biodegradation rate, improved mechanical properties, and high apatite-forming ability. Despite the profound advantages, ceramic scaffolds provide weak fracture resistance. The use of synthetic biopolymers such as poly(lactic-co-glycolic acid) (PLGA) as coating materials improves the mechanical performance of ceramic scaffolds and tailors their degradation rate. Moxifloxacin (MOX) is an antibiotic with antimicrobial activity against numerous aerobic and anaerobic bacteria. In this study, silica-based nanoparticles (NPs) enriched with calcium and magnesium, as well as copper and strontium ions that induce angiogenesis and osteogenesis, respectively, were incorporated into the PLGA coating. The aim was to produce composite akermanite/PLGA/NPs/MOX-loaded scaffolds through the foam replica technique combined with the sol–gel method to improve the overall effectiveness towards bone regeneration. The structural and physicochemical characterizations were evaluated. Their mechanical properties, apatite forming ability, degradation, pharmacokinetics, and hemocompatibility were also investigated. The addition of NPs improved the compressive strength, hemocompatibility, and in vitro degradation of the composite scaffolds, resulting in them keeping a 3D porous structure and a more prolonged release profile of MOX that makes them promising for bone regeneration applications.
Collapse
Affiliation(s)
- Georgia K. Pouroutzidou
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (G.K.P.); (E.K.)
| | - Lambrini Papadopoulou
- School of Geology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Lazaridou
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Tsachouridis
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 3AL, UK
| | - Chrysanthi Papoulia
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitra Patsiaoura
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Tsamesidis
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Chrissafis
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George Vourlias
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos M. Paraskevopoulos
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonios D. Anastasiou
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 3AL, UK
| | - Dimitrios N. Bikiaris
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleana Kontonasaki
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (G.K.P.); (E.K.)
| |
Collapse
|
2
|
Nga NK, Thanh Tam LT, Ha NT, Hung Viet P, Huy TQ. Enhanced biomineralization and protein adsorption capacity of 3D chitosan/hydroxyapatite biomimetic scaffolds applied for bone-tissue engineering. RSC Adv 2020; 10:43045-43057. [PMID: 35514933 PMCID: PMC9058216 DOI: 10.1039/d0ra09432c] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
This work presents the enhanced biomineralization and protein adsorption capacity of 3D chitosan/hydroxyapatite (CS/HAp) biomimetic scaffolds synthesized from natural sources applied for bone-tissue engineering (BTE).
Collapse
Affiliation(s)
- Nguyen Kim Nga
- School of Chemical Engineering
- Hanoi University of Science and Technology
- Hanoi
- Vietnam
| | - Lai Thi Thanh Tam
- School of Chemical Engineering
- Hanoi University of Science and Technology
- Hanoi
- Vietnam
| | - Nguyen Thu Ha
- School of Chemical Engineering
- Hanoi University of Science and Technology
- Hanoi
- Vietnam
| | - Pham Hung Viet
- Research Center for Environmental Technology and Sustainable Development
- Hanoi University of Science
- Hanoi
- Vietnam
| | - Tran Quang Huy
- Phenikaa University Nano Institute (PHENA)
- Phenikaa University
- Hanoi 12116
- Vietnam
- Faculty of Electrical and Electronic Engineering
| |
Collapse
|