1
|
Mahmud AH, Gati NI, Md Jani AM, Abu Bakar NF, Zainal Abidin SAS, Mohd Zain Z, Low KF. An amplified voltammetric immunosensor for detection of porcine serum albumin using a self-standing nanohybrid composed of multi-walled carbon nanotubes, polyelectrolytes, and gold nanoparticles. Microchem J 2024; 207:111928. [DOI: 10.1016/j.microc.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Daradmare S, Son H, Lee CS. Fabrication and Morphological Control of Nonspherical Alginate Hydrogel Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13876-13889. [PMID: 37725665 DOI: 10.1021/acs.langmuir.3c01404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
We report a simple platform for the fabrication of nonspherical alginate hydrogel particles using a dripping method. Hydrogel particles with novel morphologies, such as vortex ring, teardrop, disk, sphere, and mushroom, are fabricated by controlling various parameters. We monitored the deformation process of the hydrogel particles after they penetrated the crosslinking solution using a high-speed camera. Then, we proposed a mechanism showing a unique morphological transformation from a spherical to a disk shape. We demonstrated how controlling the collecting height that causes the drop impact force against the crosslinking solution surface was critical to producing hydrogel particles with these intriguing shapes. In particular, disk-shaped alginate particles show their ability as potential platforms for culturing mouse adrenocortical tumor cells (Y1) and a hippocampal neuronal cell (HT-22). To modify alginate particles, cell-adhesive gelatin is incorporated into the alginate matrix and then alginate particles are coated with poly(allylamine hydrochloride). Two modified alginate particles show good adhesion and proliferation rates on their surfaces. In particular, the hybrid hydrogel particles provide great potential to be developed into promising materials for cell culture, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Sneha Daradmare
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Huiseong Son
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Mori N, Kawasaki H, Nishida E, Kanemoto Y, Miyaji H, Umeda J, Kondoh K. Rose bengal-decorated rice husk-derived silica nanoparticles enhanced singlet oxygen generation for antimicrobial photodynamic inactivation. JOURNAL OF MATERIALS SCIENCE 2023; 58:2801-2813. [PMID: 36713647 PMCID: PMC9875779 DOI: 10.1007/s10853-023-08194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED Rice husks are well known for their high silica content, and the RH-derived silica nanoparticles (RH NPs) are amorphous and biocompatible; therefore, they are suitable raw materials for biomedical applications. In this study, rose bengal-impregnated rice husk nanoparticles (RB-RH NPs) were prepared for their potential photosensitization and 1O2 generation as antimicrobial photodynamic inactivation. RB is a halogen-xanthene type's photosensitizer showing high singlet oxygen efficiency, and the superior photophysical properties are desirable for RB in the antimicrobial photodynamic inactivation of bacteria. To enhance the binding of anionic RB to RH NPs, we conducted cationization for the RH NPs using polyethyleneimine (PEI). The control of the RB adsorption state on cationic PEI-modified RH NPs was essential for RB RH-NP photosensitizers to obtain efficient 1O2 generation. Minimizing RB aggregation allowed highly efficient 1O2 production from RB-RH NPs at the molar ratio of RB with the PEI, XRB/PEI. = 0.1. The RB-RH NPs have significant antimicrobial activity against Streptococcus mutans compared to free RB after white light irradiation. The RB-RH NP-based antimicrobial photodynamic inactivation can be employed effectively in treating Streptococcus mutans for dental applications. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10853-023-08194-z.
Collapse
Affiliation(s)
- Nanase Mori
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita-shi, Osaka 564-8689 Japan
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita-shi, Osaka 564-8689 Japan
| | - Erika Nishida
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060-8586 Japan
| | - Yukimi Kanemoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060-8586 Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060-8586 Japan
| | - Junko Umeda
- Joining and Welding Research Institute, Osaka University, Ibaraki, 567-0047 Japan
| | - Katsuyoshi Kondoh
- Joining and Welding Research Institute, Osaka University, Ibaraki, 567-0047 Japan
| |
Collapse
|
4
|
Blázquez-Moraleja A, Moya P, Marin ML, Bosca F. Synthesis of Novel Heterogeneous Photocatalysts based on Rose Bengal for effective Wastewater Disinfection and Decontamination. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Lin KY, Tsay YG, Chang CA. Effects of polyallylamine-coated nanoparticles on the optical and photochemical properties of rose bengal. J Chin Med Assoc 2022; 85:901-908. [PMID: 35666599 DOI: 10.1097/jcma.0000000000000762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Inasmuch as optical and photochemical properties of a photosensitizer can be modified upon association with the nanoparticle (NP), we wondered whether the effectiveness of phototherapeutic rose bengal (RB) was affected upon tethering to the sodium lanthanide fluoride NP with an outer polyallylamine (PAH) coat. METHODS RB molecules were electrostatically bound to the NaYF 4 :Gd 3+ :Nd 3+ NPs with inner silica and outer PAH coats. The products were analyzed for their size, shape and zeta potential using transmission electron microscopy and dynamic light scattering instrument. Ultraviolet-visible absorption spectrometry and fluorescence spectrometry were used to examine the spectral properties. Photodynamic effect in terms of singlet oxygen generation was quantitatively determined using the indicator 1,3-diphenylisobenzofuran (DPBF). Photocytotoxicity mediated by NP-bound RB was tested using A549 cells (Student's t test was used for statistical evaluation). RESULTS NP-bound RB had the major absorbance peak at 561 nm, in comparison with 549 nm for free RB, accompanied with a significant decrease in absorptivity. The molar extinction coefficient becomes 36 000 M -1 cm -1 , only ~35% of that for free RB. Fluorescence spectral analyses showed a paradoxical decrease in the emission with higher NP concentrations even at very low dilutions. Most importantly, the association of RB with these NPs drastically increased its singlet oxygen production upon irradiation. The interaction of RB with PAH coat could partly account for this enhancement, given our finding that PAH in solution also caused a drastic rise in DPBF reactivity by free RB. These NPs exhibited strong photocytotoxic effects, and their promise in photodynamic therapy was addressed. CONCLUSION Our findings provide evidence that the PAH coat plays a key role in enhanced biological activities of RB delivered via NPs, including the increase in singlet oxygen production and photocytotoxic effects.
Collapse
Affiliation(s)
- Kai-Ying Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yeou-Guang Tsay
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Biochemistry & Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Metabolomics-Proteomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - C Allen Chang
- Metabolomics-Proteomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Biomedical Engineering Research and Development Center (BERDC), National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
6
|
Ulfo L, Cantelli A, Petrosino A, Costantini PE, Nigro M, Starinieri F, Turrini E, Zadran SK, Zuccheri G, Saporetti R, Di Giosia M, Danielli A, Calvaresi M. Orthogonal nanoarchitectonics of M13 phage for receptor targeted anticancer photodynamic therapy. NANOSCALE 2022; 14:632-641. [PMID: 34792088 DOI: 10.1039/d1nr06053h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) represents a promising therapeutic modality for cancer. Here we used an orthogonal nanoarchitectonics approach (genetic/chemical) to engineer M13 bacteriophages as targeted vectors for efficient photodynamic killing of cancer cells. M13 was genetically refactored to display on the phage tip a peptide (SYPIPDT) able to bind the epidermal growth factor receptor (EGFR). The refactored M13EGFR phages demonstrated EGFR-targeted tropism and were internalized by A431 cancer cells, that overexpress EGFR. Using an orthogonal approach to the genetic display, M13EGFR phages were then chemically modified, conjugating hundreds of Rose Bengal (RB) photosensitizing molecules on the capsid surface, without affecting the selective recognition of the SYPIPDT peptides. Upon internalization, the M13EGFR-RB derivatives generated intracellularly reactive oxygen species, activated by an ultralow intensity white light irradiation. The killing activity of cancer cells is observed at picomolar concentrations of the M13EGFR phage.
Collapse
Affiliation(s)
- Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Andrea Cantelli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| | - Annapaola Petrosino
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Michela Nigro
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Francesco Starinieri
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Eleonora Turrini
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum-Università di Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Suleman Khan Zadran
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Giampaolo Zuccheri
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Roberto Saporetti
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| | - Matteo Di Giosia
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|