1
|
Durgut E, Claeyssens F. Pickering polymerized high internal phase emulsions: Fundamentals to advanced applications. Adv Colloid Interface Sci 2025; 336:103375. [PMID: 39667091 DOI: 10.1016/j.cis.2024.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Pickering-polymerized high internal phase emulsions have attracted attention since their successful first preparation 15 years ago, primarily due to their large pores and potential for functionalization during production. This review elucidates the fundamental principles of Pickering emulsions, Pickering HIPEs, and Pickering PolyHIPEs while comparing them to conventional surfactant-stabilized counterparts. The morphology of Pickering PolyHIPEs, with particular emphasis on methods for achieving interconnected structures, is explored and critically assessed. Lastly, the mechanical properties and diverse applications of these materials are reviewed, highlighting their use as catalytic supports and sorbent materials. The study aims to guide both new and experienced researchers in the field by comprehensively addressing the current potential and challenges of Pickering PolyHIPEs. Once the mystery behind the closed cellular pores of Pickering PolyHIPEs is resolved, these materials are expected to become more popular, particularly in applications where mass transfer is critical, such as tissue engineering.
Collapse
Affiliation(s)
- E Durgut
- Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Alanya/Antalya, Turkiye; Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom.
| | - F Claeyssens
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom; Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
2
|
Zhang S, Chen M, You Y, Wang Y, Zhu Y. Mechanism of Interconnected Pore Formation in High Internal Phase Emulsion-Templated Polymer. ACS Macro Lett 2024; 13:903-907. [PMID: 38990053 DOI: 10.1021/acsmacrolett.4c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
High internal phase emulsion-templated polymer, named polyHIPE, has received widespread attention due to its great potential applications in many fields, such as separation, adsorption, heterogeneous catalysis, and sound absorption. The broad applicability is largely dependent on its adjustable opening structure. However, the question of why polyHIPE has an interconnected pore network structure is still to be discussed. Herein, different types (w/o, o/w, and o/o) of HIPEs are prepared and subsequently detected with laser scanning confocal microscopy (LSCM), and the polyHIPEs obtained by curing the HIPEs are characterized by SEM. The observations suggest that the interconnected pore formation is primarily due to the presence of the surfactant-rich phase in the film between the neighboring droplets in HIPE. The interconnected pores are generated by removal of the surfactant-rich domains in the postcuring procedure, and their sizes would be enlarged if the solubility of the surfactant in the continuous phase decreases in the curing stage.
Collapse
Affiliation(s)
- Shengmiao Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mingjun Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yijing You
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiling Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Zhang F, Wang C, Huang X, Dong X, Chi H, Xu K, Bai Y, Wang P. New Approach for Preparation of Porous Polymers with Reversible Pore Structures for a Highly Safe Smart Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19442-19452. [PMID: 38563482 DOI: 10.1021/acsami.3c19451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Porous polymers have many industrial applications, but their pore structures (open or closed) are usually fixed during polymerization. In this study, polymers with reversible and controllable pore structures, namely, thermosensitive porous hydrogels with regulated volume phase transition temperature, were prepared using a Pickering high-internal-phase emulsion as the template. Upon heating, the hydrogels transformed not only in their wettability (between hydrophilicity and hydrophobicity with water contact angles of 21.8 and 100.9°) but also their pore structure (between open through-holes and closed holes with pore throat sizes of 15.58 and 0 μm, respectively) in a short time (<10 s). When the hydrogel was used as a separator in smart supercapacitors (SCs), this behavior effectively limited the path of electrolyte migration, reducing the chance of conflagration accidents. Moreover, by utilizing the highly reversible pore structures and wettability of the porous hydrogel, reversible charging and discharging were restored after the system cooled down. This work not only provides great guidance for preparing porous polymers with reversible pore structures but also paves the way for designing smart SCs with enhanced safety.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Chao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiaona Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiaotong Dong
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hui Chi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Kun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yungang Bai
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Pixin Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
4
|
Chen Y, Li J, Yang Y, Yang J, Lin H, Wang Q, Yang X, Meng Y, Li W, Lin Z, Zhang P. Transparent Oil-Water Separating Hydrophobic Sponge Prepared from a Pickering High Internal Phase Emulsion Stabilized by Octadecyltrichlorosilane Grafting Carbon Nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17378-17391. [PMID: 37975653 DOI: 10.1021/acs.langmuir.3c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Increasingly, oil spills and industrial discharges are wreaking havoc on the water environment; in order to efficiently separate oil and water from sewage containing oil or organic solvents, a novel porous polymer (P(EHA-co-BA)) was prepared by Pickering high internal phase emulsion (HIPE) template method. To obtain polyHIPE with better oil/water separation capacities, octadecyltrichlorosilane (OTS)-modified carbon nanotubes (CNTs) and surfactants were used as costabilizers for HIPE, which improved the stability of HIPE as well as the mechanical properties and the separation efficiency of polyHIPE. In the presence of 1 wt % OTS-CNT adding in the oil phase, 1%OTS-CNT polyHIPE has high porosity (92.21%), favorable hydrophobicity (a water contact angle of 128°), and excellent mechanical properties. As a result, 1%OTS-CNT polyHIPE has high absorption of oils and oily solvents, e.g., dichloromethane up to 36 g/g, and maintains an absorption efficiency of >97% after 20 reapplications. In the formulation of polyHIPE, cinnamaldehyde (CA) has been added to provide superior antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). It appears that the novel polyHIPE proposed in this work is a reusable antibacterial porous polymer with promising applications for oil-water separation.
Collapse
Affiliation(s)
- Yanyu Chen
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Jie Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Yingfei Yang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Junjie Yang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Huaijun Lin
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Qiwei Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Xusheng Yang
- Department of Industrial and Systems Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Yuying Meng
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Wei Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Zhidan Lin
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Peng Zhang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Dhavalikar P, Jenkins D, Rosen N, Kannapiran A, Salhadar K, Shachaf O, Silverstein M, Cosgriff-Hernández E. Hydroxyapatite nanoparticle-modified porous bone grafts with improved cell attachment. J Mater Chem B 2023; 11:10651-10664. [PMID: 37878081 PMCID: PMC10650276 DOI: 10.1039/d3tb01839c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
Emulsion-templated foams have displayed promise as injectable bone grafts; however, the use of a surfactant as an emulsifier resulted in relatively small pores and impedes cell attachment. Hydroxyapatite nanoparticles were explored as an alternative stabilizer to address these limitations. To this end, hydroxyapatite nanoparticles were first modified with myristic acid to generate the appropriate balance of hydrophobicity to stabilize a water-in-oil emulsion of neopentyl glycol diacrylate and 1,4-butanedithiol. In situ surface modification of the resulting foam with hydroxyapatite was confirmed with elemental mapping and transmission electron microscopy. Nanoparticle-stabilized foams displayed improved human mesenchymal stem cell viability (91 ± 5%) over surfactant-stabilized foams (23 ± 11%). Although the pore size was appropriate for bone grafting applications (115 ± 71 μm), the foams lacked the interconnected architecture necessary for cell infiltration. We hypothesized that a co-stabilization approach with both surfactant and nanoparticles could be used to achieve interconnected pores while maintaining improved cell attachment and larger pore sizes. A range of hydroxyapatite nanoparticle and surfactant concentrations were investigated to determine the effects on microarchitecture and cell behavior. By balancing these interactions, a co-stabilized foam was identified that possessed large, interconnected pores (108 ± 67 μm) and improved cell viability and attachment. The co-stabilized foam was then evaluated as an injectable bone graft including network formation, microscale integration with bone, push out strength, and compressive properties. Overall, this work demonstrated that in situ surface modification with nHA improved cell attachment while retaining desirable bone grafting features and injectability.
Collapse
Affiliation(s)
- Prachi Dhavalikar
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Room 3.503D, Austin, Texas, 78712, USA.
| | - Dana Jenkins
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Room 3.503D, Austin, Texas, 78712, USA.
| | - Natalie Rosen
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Aparajith Kannapiran
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Room 3.503D, Austin, Texas, 78712, USA.
| | - Karim Salhadar
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Room 3.503D, Austin, Texas, 78712, USA.
| | - Orren Shachaf
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Room 3.503D, Austin, Texas, 78712, USA.
| | - Michael Silverstein
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Elizabeth Cosgriff-Hernández
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Room 3.503D, Austin, Texas, 78712, USA.
| |
Collapse
|
6
|
Yin Z, Zhou Y, Liu X, Zhang S, Binks BP. Highly efficient and recyclable monolithic bioreactor for interfacial enzyme catalysis. J Colloid Interface Sci 2023; 648:308-316. [PMID: 37301155 DOI: 10.1016/j.jcis.2023.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
HYPOTHESIS Biocatalysts are key to the realization of all bioconversions in nature. However, the difficulty of combining the biocatalyst and other chemicals in one system limits their application in artificial reaction systems. Although some effort, such as Pickering interfacial catalysis and enzyme-immobilized microchannel reactors, have addressed this challenge an effective method to combine chemical substrates and biocatalysts in a highly efficient and re-usable monolith system is still to be developed. EXPERIMENTS A repeated batch-type biphasic interfacial biocatalysis microreactor was developed using enzyme-loaded polymersomes in the void surface of porous monoliths. Polymersomes, loaded with Candida antarctica Lipase B (CALB), are fabricated by self-assembly of the copolymer PEO-b-P(St-co-TMI) and used to stabilize oil-in-water (o/w) Pickering emulsions as a template to prepare monoliths. By adding monomer and Tween 85 to the continuous phase, controllable open-cell monoliths are prepared to inlay CALB-loaded polymersomes in the pore walls. FINDINGS The microreactor is proven to be highly effective and recyclable when a substrate flows through it, which offers superior benefits of absolute separation to a pure product and no enzyme loss. The relative enzyme activity is constantly maintained above 93% in 15 cycles. The enzyme is constantly present in the microenvironment of the PBS buffer ensuring its immunity to inactivation and facilitating its recycling.
Collapse
Affiliation(s)
- Zhengqiao Yin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiding Zhou
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiucai Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shengmiao Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX. UK.
| |
Collapse
|
7
|
Luo J, Jiang L, Liu C, Ruan G, Du F. Polyvinylpyrrolidone/Single-Walled Carbon Nanotubes Incorporated Polyhipe Monoliths Followed by HPLC for Determination of Tetracycline Antibiotics in Water Samples. J WATER CHEM TECHNO+ 2022. [DOI: 10.3103/s1063455x21060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Wang C, Chi H, Zhang F, Wang X, Wang J, Zhang H, Liu Y, Huang X, Bai Y, Xu K, Wang P. Temperature-responsive Pickering high internal phase emulsions for recyclable efficient interfacial biocatalysis. Chem Sci 2022; 13:8766-8772. [PMID: 35975156 PMCID: PMC9350585 DOI: 10.1039/d2sc01746f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
The field of biocatalysis is expanding owing to the increasing demand for efficient low-cost green chemical processes. However, a feasible strategy for achieving product separation, enzyme recovery, and high catalytic efficiency in biocatalysis remains elusive. Herein, we present thermoresponsive Pickering high internal phase emulsions (HIPEs) as controllable scaffolds for efficient biocatalysis; these HIPEs demonstrate a transition between emulsification and demulsification depending on temperature. Ultra-high-surface-area Pickering HIPEs were stabilized by Candida antarctica lipase B immobilized on starch particles modified with butyl glycidyl ether and glycidyl trimethyl ammonium chloride, thus simplifying the separation and reuse processes and significantly improving the catalytic efficiency. In addition, the switching temperature can be precisely tuned by adjusting the degree of substitution of the modified starches to meet the temperature demands of various enzymes. We believe that this system provides a green platform for various interfacial biocatalytic processes of industrial interest. The thermoresponsive Pickering high internal phase emulsions stabilized by starch particles as controllable scaffolds for efficient biocatalysis, which simplified the separation and reuse processes and significantly improved the catalytic efficiency.![]()
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, Hefei 230026, PR China
| | - Hui Chi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Fan Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, Hefei 230026, PR China
| | - Xinyue Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, Hefei 230026, PR China
| | - Jiarui Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, Hefei 230026, PR China
| | - Hao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Ying Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiaona Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yungang Bai
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Kun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Pixin Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
9
|
Barkan-Öztürk H, Menner A, Bismarck A. Emulsion-Templated Macroporous Polymer Micromixers. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hande Barkan-Öztürk
- Polymer and Composite Engineering (PaCE) Group, Institute of Material Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Strasse, 42, Vienna 1090, Austria
| | - Angelika Menner
- Polymer and Composite Engineering (PaCE) Group, Institute of Material Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Strasse, 42, Vienna 1090, Austria
| | - Alexander Bismarck
- Polymer and Composite Engineering (PaCE) Group, Institute of Material Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Strasse, 42, Vienna 1090, Austria
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
10
|
Mokadem Z, Saidi-Besbes S, Lebaz N, Elaissari A. Magnetic monolithic polymers prepared from high internal phase emulsions and Fe3O4 triazole-functionalized nanoparticles for Pb2+, Cu2+ and Zn2+ removal. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Fabrication of emulsion-templated macroporous poly(ε-caprolactone) towards highly effective and sustainable oil/water separation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Qiao M, Yang X, Zhu Y, Guerin G, Zhang S. Ultralight Aerogels with Hierarchical Porous Structures Prepared from Cellulose Nanocrystal Stabilized Pickering High Internal Phase Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6421-6428. [PMID: 32432883 DOI: 10.1021/acs.langmuir.0c00646] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cellulose nanocrystal (CNC)-based aerogels with extremely low density and hierarchical porous structure were constructed via a facile Pickering-emulsion-templated strategy. In this method, aminated CNCs (CNC-NH2) were synthesized to stabilize o/w Pickering high internal phase emulsions (Pickering HIPEs). Amino groups were introduced to CNCs to decrease the net surface charges of CNCs, enhance their aggregation, and therefore achieve Pickering HIPEs stabilized by the particles of ultralow content (∼0.1 wt %). A series of CNC aerogels was then obtained by freeze drying these emulsions. The resulting aerogels were ultralight with a density that reached ca. 0.5 mg/cm3 (an order of magnitude lower than that previously reported for CNC aerogels) and an ultrahigh porosity (up to 99.969%). Contributed to the extremely low density, the thermal conductivity of the aerogels was around 0.021 W/(m·K) which is lower than that of air (0.024 W/(m·K)). This novel strategy could be applied to other materials, such as graphene and carbon nanotubes, to prepare ultralight aerogels with controllable porous structures and unique properties.
Collapse
Affiliation(s)
- Min Qiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaocang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gerald Guerin
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shengmiao Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Li C, Weng S, Jin M, Wan D. Dendritic Macrosurfactant Assembly for Physical Functionalization of HIPE-Templated Polymers. Polymers (Basel) 2020; 12:E779. [PMID: 32244838 PMCID: PMC7240670 DOI: 10.3390/polym12040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022] Open
Abstract
High-internal-phase emulsion-templated macroporous polymers (polyHIPEs) have attracted much interest, but their surface functionalization remains a primary concern. Thus, competitive surface functionalization via physical self-assembly of macrosurfactants was reviewed. Dendritic and diblock-copolymer macrosurfactants were tested, and the former appeared to be more topologically competitive in terms of solubility, viscosity, and versatility. In particular, hyperbranched polyethyleneimine (PEI) was transformed into dendritic PEI macrosurfactants through click-like N-alkylation with epoxy compounds. Free-standing PEI macrosurfactants were used as molecular nanocapsules for charge-selective guest encapsulation and robustly dictated the surface of a macroporous polymer through the HIPE technique, in which the macroporous polymer could act as a well-recoverable adsorbent. Metal nanoparticle-loaded PEI macrosurfactants could similarly lead to polyHIPE, whose surface was dictated by its catalytic component. Unlike conventional Pickering stabilizer, PEI macrosurfactant-based metal nanocomposite resulted in open-cellular polyHIPE, rendering the catalytic sites well accessible. The active amino groups on the polyHIPE could also be transformed into functional groups of aminopolycarboxylic acids, which could efficiently eliminate trace and heavy metal species in water.
Collapse
Affiliation(s)
| | | | | | - Decheng Wan
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Rd, Shanghai 201804, China; (C.L.); (S.W.); (M.J.)
| |
Collapse
|
14
|
Agrawal M, Yadav A, Nandan B, Srivastava RK. Facile synthesis of templated macrocellular nanocomposite scaffold via emulsifier-free HIPE-ROP. Chem Commun (Camb) 2020; 56:12604-12607. [DOI: 10.1039/d0cc05331g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
High internal phase emulsion (HIPE)-templated macrocellular nanocomposite scaffolds of crosslinked poly(ε-caprolactone) were produced using an emulsifier-free, single-step synthesis and showed superior resiliency and sorption capacity.
Collapse
Affiliation(s)
- Meenal Agrawal
- Department of Textile and Fibre Engineering
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi
- India
| | - Anilkumar Yadav
- Department of Textile and Fibre Engineering
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi
- India
| | - Bhanu Nandan
- Department of Textile and Fibre Engineering
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi
- India
| | - Rajiv K. Srivastava
- Department of Textile and Fibre Engineering
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi
- India
| |
Collapse
|