1
|
Non-Noble-Metal Mono and Bimetallic Composites for Efficient Electrocatalysis of Phosphine Oxide and Acetylene C-H/P-H Coupling under Mild Conditions. Int J Mol Sci 2023; 24:ijms24010765. [PMID: 36614210 PMCID: PMC9821134 DOI: 10.3390/ijms24010765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The present work describes an efficient reaction of electrochemical phosphorylation of phenylacetylene controlled by the composition of catalytic nanoparticles based on non-noble-metals. The sought-after products are produced via the simple synthetic protocol based on room temperature, atom-economical reactions, and silica nanoparticles (SNs) loaded by one or two d-metal ions as nanocatalysts. The redox and catalytic properties of SNs can be tuned with a range of parameters, such as compositions of the bimetallic systems, their preparation method, and morphology. Monometallic SNs give phosphorylated acetylene with retention of the triple bond, and bimetallic SNs give a bis-phosphorylation product. This is the first example of acetylene and phosphine oxide C-H/P-H coupling with a regenerable and recyclable catalyst.
Collapse
|
2
|
Fedorenko SV, Stepanov AS, Bochkova OD, Mustafina AR. Main Processes Facilitating the Formation of Composite Silica-Based Nanocolloids Doped with Complexes of d- and f-Metals and Inorganic Nanoparticles. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Abstract
AbstractNickel-catalyzed cross-coupling and photoredox catalytic reactions has found widespread utilities in organic synthesis. Redox processes are key intermediate steps in many catalytic cycles. As a result, it is pertinent to measure and document the redox potentials of various nickel species as precatalysts, catalysts, and intermediates. The redox potentials of a transition-metal complex are governed by its oxidation state, ligand, and the solvent environment. This article tabulates experimentally measured redox potentials of nickel complexes supported on common ligands under various conditions. This review article serves as a versatile tool to help synthetic organic and organometallic chemists evaluate the feasibility and kinetics of redox events occurring at the nickel center, when designing catalytic reactions and preparing nickel complexes.1 Introduction1.1 Scope1.2 Measurement of Formal Redox Potentials1.3 Redox Potentials in Nonaqueous Solution2 Redox Potentials of Nickel Complexes2.1 Redox Potentials of (Phosphine)Ni Complexes2.2 Redox Potentials of (Nitrogen)Ni Complexes2.3 Redox Potentials of (NHC)Ni Complexes
Collapse
|
4
|
Bochkova O, Khrizanforov M, Gubaidullin A, Gerasimova T, Nizameev I, Kholin K, Laskin A, Budnikova Y, Sinyashin O, Mustafina A. Synthetic Tuning of Co II-Doped Silica Nanoarchitecture Towards Electrochemical Sensing Ability. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1338. [PMID: 32659957 PMCID: PMC7407651 DOI: 10.3390/nano10071338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022]
Abstract
The present work introduces both synthesis of silica nanoparticles doped with CoII ions by means of differently modified microemulsion water-in-oil (w/o) and Stöber techniques and characterization of the hybrid nanoparticles (CoII@SiO2) by TEM, DLS, XRD, ICP-EOS, SAXS, UV-Vis, and UV-Vis/DR spectroscopy and electrochemical methods. The results reveal the lack of nanocrystalline dopants inside the hybrid nanoparticles, as well as no ligands, when CoII ions are added to the synthetic mixtures as CoII(bpy)3 complexes, thus pointing to coordination of CoII ions with Si-O- groups as main driving force of the doping. The UV-Vis/DR spectra of CoII@SiO2 in the range of d-d transitions indicate that Stöber synthesis in greater extent than the w/o one stabilizes tetrahedral CoII ions versus the octahedral ions. Both cobalt content and homogeneity of the CoII distribution within CoII@SiO2 are greatly influenced by the synthetic technique. The electrochemical behavior of CoII@SiO2 is manifested by one oxidation and two reduction steps, which provide the basis for electrochemical response on glyphosate and HP(O)(OEt)2 with the LOD = 0.1 μM and the linearity within 0.1-80 μM. The Stöber CoII@SiO2 are able to discriminate glyphosate from HP(O)(OEt)2, while the w/o nanoparticles are more efficient but nonselective sensors on the toxicants.
Collapse
Affiliation(s)
- Olga Bochkova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russia; (M.K.); (A.G.); (T.G.); (I.N.); (K.K.); (Y.B.); (O.S.); (A.M.)
| | - Mikhail Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russia; (M.K.); (A.G.); (T.G.); (I.N.); (K.K.); (Y.B.); (O.S.); (A.M.)
| | - Aidar Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russia; (M.K.); (A.G.); (T.G.); (I.N.); (K.K.); (Y.B.); (O.S.); (A.M.)
| | - Tatiana Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russia; (M.K.); (A.G.); (T.G.); (I.N.); (K.K.); (Y.B.); (O.S.); (A.M.)
| | - Irek Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russia; (M.K.); (A.G.); (T.G.); (I.N.); (K.K.); (Y.B.); (O.S.); (A.M.)
| | - Kirill Kholin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russia; (M.K.); (A.G.); (T.G.); (I.N.); (K.K.); (Y.B.); (O.S.); (A.M.)
| | - Artem Laskin
- Kazan Federal University, Kremlevskaya str. 29/1, 420008 Kazan, Russia;
| | - Yulia Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russia; (M.K.); (A.G.); (T.G.); (I.N.); (K.K.); (Y.B.); (O.S.); (A.M.)
| | - Oleg Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russia; (M.K.); (A.G.); (T.G.); (I.N.); (K.K.); (Y.B.); (O.S.); (A.M.)
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russia; (M.K.); (A.G.); (T.G.); (I.N.); (K.K.); (Y.B.); (O.S.); (A.M.)
| |
Collapse
|