1
|
Nodoushan RM, Shekarriz S, Shariatinia Z, Montazer M, Heydari A. Novel photo and bio-active greyish-black cotton fabric through air- and nitrogen- carbonized zinc-based MOF for developing durable functional textiles. Int J Biol Macromol 2023; 247:125576. [PMID: 37385318 DOI: 10.1016/j.ijbiomac.2023.125576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/10/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
This study explores the potential of using the carbonization of Zn-based metal-organic frameworks (Zn-MOF-5) under N2 and air to modify zinc oxide (ZnO) nanoparticle for the production of various photo and bio-active greyish-black cotton fabrics. The MOF-derived ZnO under N2 demonstrated a significantly higher specific surface area (259 m2g-1) compared to ZnO (12 m2g-1) and MOF-derived ZnO under air (41.6 m2 g-1). The products were characterized using various techniques, including FTIR, XRD, XPS, FE-SEM, TEM, HRTEM, TGA, DLS, and EDS. The tensile strength and dye degradation properties of the treated fabrics were also investigated. The results indicate that the high dye degradation capability of MOF-derived ZnO under N2 is likely due to the lower ZnO band gap energy and improvement in electron-hole pair stability. Additionally, the antibacterial activities of the treated fabrics against Staphylococcus and Pseudomonas aeruginosa were investigated. The cytotoxicity of the fabrics was studied on human fibroblast cell lines using an MTT assay. The study findings demonstrate that the cotton fabric covered with carbonized Zn-MOF under N2 is human-cell compatible while showing high antibacterial activities and stability against washing, highlighting its potential for use in developing functional textiles with enhanced properties.
Collapse
Affiliation(s)
- Roya Mohammadipour Nodoushan
- Color and Polymer Research Centre, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran
| | - Shahla Shekarriz
- Color and Polymer Research Centre, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran.
| | - Zahra Shariatinia
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran
| | - Majid Montazer
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413, Tehran, Iran.
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| |
Collapse
|
2
|
Das P, Sherazee M, Marvi PK, Ahmed SR, Gedanken A, Srinivasan S, Rajabzadeh AR. Waste-Derived Sustainable Fluorescent Nanocarbon-Coated Breathable Functional Fabric for Antioxidant and Antimicrobial Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:29425-29439. [PMID: 37279206 DOI: 10.1021/acsami.3c03778] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hospital-acquired (nosocomial) infections account for the majority of adverse health effects during care delivery, placing an immense financial strain on healthcare systems around the world. For the first time, the present article provides evidence of a straightforward pollution-free technique to fabricate a heteroatom-doped carbon dot immobilized fluorescent biopolymer composite for the development of functional textiles with antioxidant and antimicrobial properties. A simple, facile, and eco-friendly approach was devised to prepare heteroatom-doped carbon dots from waste green tea and a biopolymer. The carbon dots showed an excitation-dependent emission behavior, and the XPS data unveiled that they are co-doped with nitrogen and sulfur. A facile physical compounding strategy was adopted to fabricate a carbon dot reinforced biopolymeric composite followed by immobilization onto the textile. The composite textiles revealed excellent antioxidant activity, determined by 1,1-diphenyl-2-picrylhydrazyl (>80%) and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid assays (>90%). The results of the disc diffusion assay indicated that the composite textiles substantially inhibited the growth of both tested bacteria Escherichia coli and Bacillus subtilis with increasing coating cycles. The time-dependent antibacterial experiments revealed that the nanocomposite can inhibit significant bacterial growth within a few hours. The present study could open up the possibility for the commercialization of inexpensive smart textile substrates for the prevention of microbial contamination used for the medical and healthcare field.
Collapse
Affiliation(s)
- Poushali Das
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Masoomeh Sherazee
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Parham Khoshbakht Marvi
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Syed Rahin Ahmed
- W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Seshasai Srinivasan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Amin Reza Rajabzadeh
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
3
|
da Silva DJ, Ferreira RR, da S. Ferreira G, Barbosa RFS, Marciano JS, Camani PH, Souza AG, Rosa DS. Multifunctional cotton fabrics with novel antibacterial coatings based on chitosan nanocapsules and polyacrylate. JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH 2023; 20:1-15. [PMID: 37362951 PMCID: PMC10088599 DOI: 10.1007/s11998-023-00761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/01/2023] [Accepted: 01/08/2023] [Indexed: 06/28/2023]
Abstract
Chitosan is a cationic polysaccharide with intrinsic antimicrobial properties that can be used as an ecological alternative to develop functional materials to inhibit the proliferation of microorganisms. This work evaluates chitosan nanocapsules (CNs) as a self-disinfecting agent to provide bactericidal activity on cotton fabrics (CF), using polyacrylate to bind the CNs on the CF surface. The fabrics were characterized by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), contact angle (CA), moisture retention, and antimicrobial tests against Escherichia coli and Bacillus subtilis. The FTIR results showed new peaks related to chitosan structure, indicating the adequate fixation of the CNs on the cotton fibers. SEM images corroborated the polyacrylate binder's efficient adhesion, connecting the CNs and the cotton fiber surface. The CF surface properties were considerably modified, while CN/polyacrylate coating promoted antibacterial activity against the B. subtilis (gram-positive bacteria) for the developed wipe, but they do not display bactericidal effects against E. coli (gram-negative bacteria). Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11998-023-00761-y.
Collapse
Affiliation(s)
- Daniel J. da Silva
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, Santo André, SP 5001 CEP 09210-210 Brazil
| | - Rafaela R. Ferreira
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, Santo André, SP 5001 CEP 09210-210 Brazil
| | - Greiciele da S. Ferreira
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, Santo André, SP 5001 CEP 09210-210 Brazil
| | - Rennan F. S. Barbosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, Santo André, SP 5001 CEP 09210-210 Brazil
| | - Jéssica S. Marciano
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, Santo André, SP 5001 CEP 09210-210 Brazil
| | - Paulo H. Camani
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, Santo André, SP 5001 CEP 09210-210 Brazil
| | - Alana G. Souza
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, Santo André, SP 5001 CEP 09210-210 Brazil
| | - Derval S. Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, Santo André, SP 5001 CEP 09210-210 Brazil
| |
Collapse
|
4
|
Luo Y, Li Z, Chen Y, Jin T. Esterification process of incorporation CS2 activation and its effect on the properties of hydrophobic modified cotton filter fabric via ARGET-ATRP. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Zain G, Bučková M, Mosnáčková K, Doháňošová J, Opálková Šišková A, Mičušík M, Kleinová A, Matúš P, Mosnáček J. Antibacterial cotton fabric prepared by surface-initiated photochemically induced atom transfer radical polymerization of 2-(dimethylamino)ethyl methacrylate with subsequent quaternization. Polym Chem 2021. [DOI: 10.1039/d1py01322j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antibacterial highly grafted cotton fabric with good laundry resistance was prepared using photoATRP in the presence of air.
Collapse
Affiliation(s)
- Gamal Zain
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
- Pretreatment and Finishing of Cellulose Based Textiles Dept., Textile Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Katarína Mosnáčková
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Jana Doháňošová
- Central Laboratories, Faculty of Chemical and Food Technology STU, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Alena Opálková Šišková
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
- Institute of Materials and Machines Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava, Slovakia
| | - Matej Mičušík
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Angela Kleinová
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Jaroslav Mosnáček
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava, Slovakia
| |
Collapse
|
6
|
Luo Y, Deng S, Li Z, Cao L, He Y, Chen Y, Jin T. Effect of CS2/NaOH activation on the hydrophobic durability of cotton filter fabric modified via ARGET-ATRP. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|