1
|
He X, Jiang C, Yang J, Sheng S, Wang Y. Sensitive photoelectric sensing for 5-HMF detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3766-3773. [PMID: 38818642 DOI: 10.1039/d3ay02273k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
5-Hydroxymethylfurfural (5-HMF) is a heterocyclic compound with six carbons commonly found in heat-treated carbohydrate-rich foods. 5-HMF exceeding the specified limit is cytotoxic to the human body, and will be converted into carcinogenic substances (5-sulfoxide methyl furfural) after long-term accumulation in the body. Therefore, it is highly necessary to develop a sensitive and accurate detection method for 5-HMF in the field of food safety. In this study, a photoelectric sensing method was developed for the highly sensitive detection of 5-HMF using hollow TiO2 nanospheres successfully synthesized by template, sol-gel and lye etching methods. The structure and composition of the materials were studied by XRD, XPS, SEM and TEM. The electrochemical and photoelectrochemical properties of an h-TiO2 electrode probe based on indium tin oxide (ITO) slides were investigated. The results indicated that the linear relationship of 5-HMF is good in the concentration range of 10-11-10-7 M, and the detection limit of 5-HMF is 0.001 nM. Moreover, the PEC sensor shows high accuracy in the detection of actual samples.
Collapse
Affiliation(s)
- Xin He
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| | - Caiyun Jiang
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
- Jiangsu Engineering Research and Development Center of Food Safety, Department of Health, Jiangsu Vocational Institute of Commerce, Nanjing 211168, China
| | - Jie Yang
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| | - Shuangchao Sheng
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| | - Yuping Wang
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
2
|
Li L, Chen J, Xiao C, Luo Y, Zhong N, Xie Q, Chang H, Zhong D, Xu Y, Zhao M, Liao Q. Recent advances in photoelectrochemical sensors for detection of ions in water. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Fan L, Liang G, Zhang C, Fan L, Yan W, Guo Y, Shuang S, Bi Y, Li F, Dong C. Visible-light-driven photoelectrochemical sensing platform based on BiOI nanoflowers/TiO 2 nanotubes for detection of atrazine in environmental samples. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124894. [PMID: 33412470 DOI: 10.1016/j.jhazmat.2020.124894] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 05/07/2023]
Abstract
In this work, a visible-light-driven photoelectrochemical (PEC) sensing platform was developed based on BiOI nanoflowers/TiO2 nanotubes (BiOI NFs/TiO2 NTs) for detection of atrazine (ATZ). The BiOI NFs/TiO2 NTs p-n heterojunctions synthesized by decorating BiOI NFs on TiO2 NTs via simple hydrothermal approach exhibit strong visible-light absorption ability, high photocurrent response and PEC activity. Thus BiOI NFs/TiO2 NTs heterostructures were first explored to act as the photoelectrode for the immobilization of the anti-ATZ aptamer to develop a PEC sensing platform. The design PEC aptasensing platform exhibits prominent analytical performance for determination of ATZ with a low detection limit of 0.5 pM under visible-light irradiation, and displays good selectivity for ATZ in the control experiments. The superior behavior of the sensing platform could be ascribed to the design of the appropriate sensing material with tubular microstructure, excellent PEC response of the photoelectrode, and the large loading amount of aptamer. Meanwhile, the PEC sensing platform was used to determine ATZ in environmental samples and a satisfied result was obtained.
Collapse
Affiliation(s)
- Lifang Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Guifang Liang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Caiyun Zhang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Li Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Wenjun Yan
- Analytical Instrumentation Center, Institute of Coal Chemistry, CAS, Taiyuan 030001, PR China
| | - Yujing Guo
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Shaomin Shuang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yingpu Bi
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000, PR China
| | - Feng Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|