1
|
He J, Lin C, Hu Y, Gu S, Deng H, Shen Z. Research progress of graphene-based nanomaterials in the diagnosis and treatment of head and neck cancer. Sci Prog 2024; 107:368504241291342. [PMID: 39574301 PMCID: PMC11585035 DOI: 10.1177/00368504241291342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Head and neck cancer (HNC) is the sixth most common cancer in the world, and its incidence is increasing year by year. Due to the late-stage diagnosis and poor prognosis of HNC, as well as the limitations of traditional treatment methods, it is urgent to improve early detection rates and explore alternative treatment approaches. Graphene-based nanomaterials (GBNs) have been widely applied in biomedical fields due to their high surface area, excellent photothermal properties, and high loading capacity. This literature review introduces the functionalization and biocompatibility of GBNs, followed by a focus on their applications in the diagnosis and treatment of HNC. This includes their potential as bioimaging or biosensing platforms for diagnosis and monitoring, as well as their research progress in chemotherapy drug delivery, phototherapy, and gene transfection. The tremendous potential of GBNs as a platform for combination therapies is emphasized. Finally, in this literature review, we briefly discuss the toxicity and limitations of GBNs in the current research and provide an outlook on their future clinical applications in the diagnosis and treatment of HNC.
Collapse
Affiliation(s)
- Jiali He
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Chen Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Yanghao Hu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Shanshan Gu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Hongxia Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhisen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Liu G, La M, Wang J, Liu J, Han Y, Liu L. Magnetically Assisted Immobilization-Free Detection of microRNAs Based on the Signal Amplification of Duplex-Specific Nuclease. BIOSENSORS 2023; 13:699. [PMID: 37504098 PMCID: PMC10437004 DOI: 10.3390/bios13070699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
The double specific nuclease (DSN)-based methods for microRNAs (miRNAs) detection usually require the immobilization of DNA probes on a solid surface. However, such strategies have the drawbacks of low hybridization and cleavage efficiency caused by steric hindrance effect and high salt concentration on the solid surface. Herein, we proposed an immobilization-free method for miRNA detection on the basic of DSN-assisted signal amplification. The biotin- and fluorophore-labeled probes were captured by streptavidin-modified magnetic beads through streptavidin-biotin interactions, thus producing a poor fluorescence signal. Once the DNA probes were hybridized with target miRNA in solution to form DNA-miRNA duplexes, DNA stands in the duplexes would be selectively digested by DSN. The released target miRNA could initiate the next hybridization/cleavage recycling in the homogeneous solution, finally resulting in the release of numerous fluorophore-labeled fragments. The released fluorophores remained in solution and emitted strong fluorescence after treatment by the streptavidin-modified magnetic beads. The immobilization-free method achieved the assays of miRNA-21 with a detection limit down to 0.01 pM. It was employed to evaluate the expression levels of miRNA-21 in different cancer cells with satisfactory results.
Collapse
Affiliation(s)
- Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ming La
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Jiwei Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiawen Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yongjun Han
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
3
|
Ashraf G, Zhong ZT, Asif M, Aziz A, Iftikhar T, Chen W, Zhao YD. State-of-the-Art Fluorescent Probes: Duplex-Specific Nuclease-Based Strategies for Early Disease Diagnostics. BIOSENSORS 2022; 12:bios12121172. [PMID: 36551139 PMCID: PMC9775407 DOI: 10.3390/bios12121172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
Precision healthcare aims to improve patient health by integrating prevention measures with early disease detection for prompt treatments. For the delivery of preventive healthcare, cutting-edge diagnostics that enable early disease detection must be clinically adopted. Duplex-specific nuclease (DSN) is a useful tool for bioanalysis since it can precisely digest DNA contained in duplexes. DSN is commonly used in biomedical and life science applications, including the construction of cDNA libraries, detection of microRNA, and single-nucleotide polymorphism (SNP) recognition. Herein, following the comprehensive introduction to the field, we highlight the clinical applicability, multi-analyte miRNA, and SNP clinical assays for disease diagnosis through large-cohort studies using DSN-based fluorescent methods. In fluorescent platforms, the signal is produced based on the probe (dyes, TaqMan, or molecular beacon) properties in proportion to the target concentration. We outline the reported fluorescent biosensors for SNP detection in the next section. This review aims to capture current knowledge of the overlapping miRNAs and SNPs' detection that have been widely associated with the pathophysiology of cancer, cardiovascular, neural, and viral diseases. We further highlight the proficiency of DSN-based approaches in complex biological matrices or those constructed on novel nano-architectures. The outlooks on the progress in this field are discussed.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Chen W, Li S, Shen Y, Cai Y, Jin J, Yang Z. Polyethylenimine modified graphene oxide for effective chemo-gene-photothermal triples therapy of triple-negative breast cancer and inhibits metastasis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Qin L, Yang D, Yin S, Qian Y, Cai Y, Jin J, Huang G, Yang Z. Graphene Oxide Biosensors Based on Hybridization Chain Reaction Signal Amplification for Detecting Biomarkers of Radiation-Resistant Nasopharyngeal Carcinoma and Imaging in Living Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9664-9672. [PMID: 34343008 DOI: 10.1021/acs.langmuir.1c00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since microRNA-205 (miRNA-205) is a predictive biomarker for antiradiation of nasopharyngeal carcinoma (NPC), quantitative detection of miRNA-205 is important for developing personalized strategies for the treatment of NPC. In this investigation, based on the graphene oxide (GO) sensor and hybridization chain reaction (HCR) for fluorescence signal amplification, a highly sensitive and selective detection method for miRNA-205 was designed. A target-recycling mechanism is employed, where a single miRNA-205 target triggers the signal amplification of many DNA signal probes. The biosensor shows the ability to analyze miRNA-205 in solution, and it can detect miRNA-205 at concentrations as low as 311.96 pM. Furthermore, the method is specific in that it distinguishes between a target miRNA and a sequence with single-, double-, and three-base mismatches, as well as other miRNAs. Considering its simplicity and superior sensitivity, it was also verified in 1‰ serum with a detection limit of 111.65 pM. Importantly, the method successfully demonstrated that miRNA-205 could be imaged in living cells, which provided the possibility of localizing target molecules in live cell imaging applications. This method has great clinical application potential in the determination of miRNA-205, a biomarker for radiation-resistant NPC.
Collapse
Affiliation(s)
- Lan Qin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Dutao Yang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Shaoxian Yin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Yue Qian
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Yanfei Cai
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - Zhaoqi Yang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
6
|
Wu Y, Cui S, Li Q, Zhang R, Song Z, Gao Y, Chen W, Xing D. Recent advances in duplex-specific nuclease-based signal amplification strategies for microRNA detection. Biosens Bioelectron 2020; 165:112449. [DOI: 10.1016/j.bios.2020.112449] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
|