1
|
Melo-Hernández S, Ríos MC, Portilla J. Chemistry and properties of fluorescent pyrazole derivatives: an approach to bioimaging applications. RSC Adv 2024; 14:39230-39241. [PMID: 39664246 PMCID: PMC11632951 DOI: 10.1039/d4ra07485h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024] Open
Abstract
Fluorescent bioimaging is a crucial technique for in vivo studies in real cell samples, providing vital information about the metabolism of ions or molecules of biological and pharmaceutical significance. This technique typically uses probes based on organic small-molecule fluorophores, with N-heteroaromatic scaffolds playing an essential role due to their exceptional electronic properties and biocompatibility. Among these, pyrazole derivatives stand out as particularly promising due to their high synthetic versatility and structural diversity. This review highlights prominent examples from the period 2020-2024, focusing on the chemistry, properties, and bioimaging applications of fluorescent pyrazole derivatives. By highlighting the latest advancements in this field, this manuscript aims to inspire and motivate researchers, emphasizing the potential impact of this work on the future of bioimaging.
Collapse
Affiliation(s)
- Santiago Melo-Hernández
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - María-Camila Ríos
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| |
Collapse
|
2
|
Polo-Cuadrado E, Ferrer K, Sánchez-Márquez J, Charris-Molina A, Rodríguez-Núñez YA, Espinoza-Catalán L, Gutiérrez M. Unexpected discovery: "A new 3,3'-bipyrazolo[3,4- b]pyridine scaffold and its comprehensive analysis". Heliyon 2024; 10:e32573. [PMID: 38961942 PMCID: PMC11219494 DOI: 10.1016/j.heliyon.2024.e32573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
In this study, a novel 3,3'-bipyrazolo [3,4-b]pyridine-type structure was synthesized from 5-acetylamino-3-methyl-1-phenylpyrazole using the Vilsmeier-Haack reaction as a key step. The spectroscopic properties and structural elucidation of the compound were determined with the use of FT-IR, HRMS, 1H NMR, and 13C NMR. Likewise, the theoretical analysis of the IR and NMR spectra allowed peaks to be assigned and a solid correlation was demonstrated between the experimental and theoretical results. Finally, ab initio calculations based on the density functional theory method at the B3LYP/6-311G (d,p) level of theory were used to determine the conformational energy barrier, facilitating the identification of the most probable conformers of the synthesized compound. Overall, our findings contribute to the understanding of bipyrazolo [3,4-b]pyridine derivatives.
Collapse
Affiliation(s)
- Efraín Polo-Cuadrado
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Karoll Ferrer
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Jesús Sánchez-Márquez
- Departamento de Química-Física, Universidad de Cádiz, Facultad de Ciencias, 4011510 Puerto Real, Cádiz, Spain
| | - Andrés Charris-Molina
- CIBION-CONICET, Centro de Investigaciones en Bionanociencias, NMR Group, Polo Científico Tecnológico, Ciudad Autónoma de Buenos Aires, Buenos Aires C1425FQD, Argentina
| | - Yeray A. Rodríguez-Núñez
- Laboratorio de Síntesis Orgánica y Organometálica, Centro de Química Teórica y Computacional (CQTC), Universidad Andrés Bello, Facultad de Ciencias Exactas, Santiago 8370146, Chile
| | - Luis Espinoza-Catalán
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile
| | - Margarita Gutiérrez
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3460000, Chile
| |
Collapse
|
3
|
Gowda D, Harsha KB, Shalini VG, Rangappa S, Rangappa KS. Microwave assisted one-pot access to pyrazolo quinolinone and tetrahydroisoxazolo quinolinone derivatives via T3P®-DMSO catalysed tandem oxidative-condensation reaction. RSC Adv 2023; 13:28362-28370. [PMID: 37795377 PMCID: PMC10545979 DOI: 10.1039/d3ra05235d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
A new approach for the synthesis of two important annulated pyrazolo quinolinone and tetrahydroisoxazolo quinolinone derivatives from multicomponent reactions was achieved by using T3P®-DMSO-catalysed reactions of stable alcohols, cyclic 1,3-dicarbonyl compounds and amino derivatives of phenyl pyrazoles and isoxazole and has been reported for the first time. This reaction occurred via a tandem oxidative-condensation reaction under microwave irradiation and notable characteristics of this protocol are MCR reactions, shorter reaction time, less waste creation, ease of workup, stable precursors, broad substrate scope and functional group tolerance.
Collapse
Affiliation(s)
- Darshini Gowda
- DOS in Chemistry, University of Mysore Mysuru-57006 India
| | - Kachigere B Harsha
- Department of Chemistry, School of Engineering, University of Mysore Mysuru-570006 India
| | | | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine Nagamangala-571448 India
| | | |
Collapse
|
4
|
Parvin T. Multicomponent Reactions Using C,N-Binucleophilic Nature of Aminopyrazoles: Construction of Pyrazole-Fused Heterocycles. Top Curr Chem (Cham) 2023; 381:19. [PMID: 37237061 DOI: 10.1007/s41061-023-00427-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023]
Abstract
Synthesis of pyrazole-fused heterocycles has gained considerable attention in recent years due to their wide applications in medicinal chemistry. Aminopyrazoles are versatile building blocks for the synthesis of pyrazole-fused heterocycles by multicomponent reactions. Due to the presence of multiple reaction sites, they have fascinating chemical reactivity. Thus, they have been extensively used in multicomponent reactions for the construction of pyrazole-fused heterocycles. Although few review articles on the preparation and applications of aminopyrazoles are known in the literature, to date there is no dedicated review article on the construction of pyrazole-fused heterocycles exploring the reactivity of amino pyrazoles as C,N-binucleophiles in multicomponent reactions. Considering this, herein the multicomponent reactions for the construction of pyrazole-fused heterocycles exploring C,N-binucleophilic nature of amino pyrazoles have been reported.
Collapse
Affiliation(s)
- Tasneem Parvin
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna, 800005, India.
| |
Collapse
|
5
|
Sarmiento JT, Portilla J. Current Advances in Diazoles-based Chemosensors for CN- and FDetection. Curr Org Synth 2023; 20:77-95. [PMID: 35184705 DOI: 10.2174/1570179419666220218095741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Advances in molecular probes have recently intensified because they are valuable tools in studying species of interest for human health, the environment, and industry. Among these species, cyanide (CN-) and fluoride (F-) stand out as hazardous and toxic ions in trace amounts. Thus, there is a significant interest in probes design for their detection with diverse diazoles (pyrazole and imidazole) used for this purpose. These diazole derivatives are known as functional molecules because of their known synthetic versatility and applicability, as they exhibit essential photophysical properties with helpful recognition centers. This review provides an overview of the recent progress (2017-2021) in diazole-based sensors for CN- and F- detection, using the azolic ring as a signaling or recognition unit. The discussion focuses on the mechanism of the action described for recognizing the anion, the structure of the probes with the best synthetic simplicity, detection limits (LODs), application, and selectivity. In this context, the analysis involves probes for cyanide sensing first, then probes for fluoride sensing, and ultimately, dual probes that allow both species recognition.
Collapse
Affiliation(s)
- Jeymy T Sarmiento
- Department of Chemistry, Faculty of Sciences, Universidad de los Andes, Bogota, D.C, Colombia
| | - Jaime Portilla
- Department of Chemistry, Faculty of Sciences, Universidad de los Andes, Bogota, D.C, Colombia
| |
Collapse
|
6
|
Recent Advances in Synthesis and Properties of Pyrazoles. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pyrazole-containing compounds represent one of the most influential families of N-heterocycles due to their proven applicability and versatility as synthetic intermediates in preparing relevant chemicals in biological, physical-chemical, material science, and industrial fields. Therefore, synthesizing structurally diverse pyrazole derivatives is highly desirable, and various researchers continue to focus on preparing this functional scaffold and finding new and improved applications; this review highlights some of the most recent and strategic examples regarding the synthesis and properties of different pyrazole derivatives, mainly reported from 2017–present. The discussion involves strategically functionalized rings (i.e., amines, carbaldehydes, halides, etc.) and their use in forming various fused systems, predominantly bicyclic cores with 5:6 fusion taking advantage of our experience in this field and the more recent investigations of our research group.
Collapse
|
7
|
Al-Shuaeeb RAA, Alekseeva AY, Yashchenko NN, Zhitar SV, Mel’nik EA, Bardasov IN. Synthesis and Optical Properties of 3,4-Diamino-6-aryl-1H-pyrazolo[3,4-b]pyridine-5-carbonitriles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022070089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Danel A, Gondek E, Kucharek M, Szlachcic P, Gut A. 1 H-Pyrazolo[3,4- b]quinolines: Synthesis and Properties over 100 Years of Research. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092775. [PMID: 35566124 PMCID: PMC9099536 DOI: 10.3390/molecules27092775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
Abstract
This paper summarises a little over 100 years of research on the synthesis and the photophysical and biological properties of 1H-pyrazolo[3,4-b]quinolines that was published in the years 1911–2021. The main methods of synthesis are described, which include Friedländer condensation, synthesis from anthranilic acid derivatives, multicomponent synthesis and others. The use of this class of compounds as potential fluorescent sensors and biologically active compounds is shown. This review intends to summarize the abovementioned aspects of 1H-pyrazolo[3,4-b]quinoline chemistry. Some of the results that are presented in this publication come from the laboratories of the authors of this review.
Collapse
Affiliation(s)
- Andrzej Danel
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Podchorążych Str. 1, 30-084 Krakow, Poland;
- Correspondence:
| | - Ewa Gondek
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Podchorążych Str. 1, 30-084 Krakow, Poland;
| | - Mateusz Kucharek
- Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland; (M.K.); (P.S.)
| | - Paweł Szlachcic
- Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland; (M.K.); (P.S.)
| | - Arkadiusz Gut
- Faculty of Chemistry, Jagiellonian University, Gronostajowa Str. 2, 30-387 Krakow, Poland;
| |
Collapse
|
9
|
Synthesis of Novel Pyrazolo[3,4-b]pyridines with Affinity for β-Amyloid Plaques. MOLBANK 2022. [DOI: 10.3390/m1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Three novel pyrazolo[3,4-b]pyridines were synthesized via the cyclization of 5-amino-1-phenylpyrazole with the corresponding unsaturated ketone in the catalytic presence of ZrCl4. The ketones were afforded by modifying a stabilized ylide facilitated Wittig reaction in fairly high yields. The novel compounds exhibited exciting photophysical properties with the dimethylamine phenyl-bearing pyrazolopyridine showing exceptionally large Stoke’s shifts. Finally, both the dimethylamino- and the pyrene-substituted compounds demonstrated high and selective binding to amyloid plaques of Alzheimer’s disease (AD) patient brain slices upon fluorescent confocal microscopy observation. These results reveal the potential application of pyrazolo[3,4-b]pyridines in the development of AD amyloid plaque probes of various modalities for AD diagnosis.
Collapse
|
10
|
Ríos MC, Bravo NF, Sánchez CC, Portilla J. Chemosensors based on N-heterocyclic dyes: advances in sensing highly toxic ions such as CN - and Hg 2. RSC Adv 2021; 11:34206-34234. [PMID: 35497277 PMCID: PMC9042589 DOI: 10.1039/d1ra06567j] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/02/2021] [Indexed: 12/19/2022] Open
Abstract
CN- and Hg2+ ions are harmful to both the environment and human health, even at trace levels. Thus, alternative methods for their detection and quantification are highly desirable given that the traditional monitoring systems are expensive and require qualified personnel. Optical chemosensors (probes) have revolutionized the sensing of different species due to their high specificity and sensitivity, corresponding with their modular design. They have also been used in aqueous media and different pH ranges, facilitating their applications in various samples. The design of molecular probes is based on organic dyes, where the key species are N-heterocyclic compounds (NHCs) due to their proven photophysical properties, biocompatibility, and synthetic versatility, which favor diverse applications. Accordingly, this review aims to provide an overview of the reports from 2016 to 2021, in which fluorescent probes based on five- and six-membered N-heterocycles are used for the detection of CN- and Hg2+ ions.
Collapse
Affiliation(s)
- María-Camila Ríos
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Néstor-Fabián Bravo
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Christian-Camilo Sánchez
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| |
Collapse
|
11
|
Ambient-Temperature Synthesis of (E)-N-(3-(tert-Butyl)-1-methyl-1H-pyrazol-5-yl)-1-(pyridin-2-yl)methanimine. MOLBANK 2021. [DOI: 10.3390/m1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We report the ambient-temperature synthesis of novel (E)-N-(3-(tert-butyl)-1-methyl-1H-pyrazol-5-yl)-1-(pyridin-2-yl)methanamine 3 in 81% yield by a condensation reaction between 3-(tert-butyl)-1-methyl-1H-pyrazol-5-amine 1 and 2-pyridinecarboxaldehyde 2 in methanol using magnesium sulfate as a drying agent. The N-pyrazolyl imine 3 was full characterized by IR, 1D, and 2D NMR spectroscopy, mass spectrometry, and elemental analysis.
Collapse
|
12
|
Tigreros A, Portilla J. Recent progress in chemosensors based on pyrazole derivatives. RSC Adv 2020; 10:19693-19712. [PMID: 35515469 PMCID: PMC9054117 DOI: 10.1039/d0ra02394a] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Colorimetric and fluorescent probes based on small organic molecules have become important tools in modern biology because they provide dynamic information concerning the localization and quantity of the molecules and ions of interest without the need for genetic engineering of the sample. In the past five years, these probes for ions and molecules have attracted great attention because of their biological, environmental and industrial significance combined with the simplicity and high sensitivity of absorption and fluorescence techniques. Moreover, pyrazole derivatives display a number of remarkable photophysical properties and wide synthetic versatility superior to those of other broadly used scaffolds. This review provides an overview of the recent (2016-2020) findings on chemosensors containing pyrazole derivatives (pyrazoles, pyrazolines and fused pyrazoles). The discussion focuses on the design and physicochemical properties of chemosensors in order to realize their full potential for practical applications in environmental and biological monitoring (sensing of metal ions, anions, explosives, and biomolecules). We also present our conclusions and outlook for the future.
Collapse
Affiliation(s)
- Alexis Tigreros
- Department of Chemistry, Bioorganic Compounds Research Group, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Jaime Portilla
- Department of Chemistry, Bioorganic Compounds Research Group, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| |
Collapse
|
13
|
Vargas-Oviedo D, Butassi E, Zacchino S, Portilla J. Eco-friendly synthesis and antifungal evaluation of N-substituted benzimidazoles. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02575-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Praveena G, Yagnam S, Banoth L, Trivedi R, Prakasham RS. Bacterial biosynthesis of nanosilver: a green catalyst for the synthesis of (amino pyrazolo)-(phenyl)methyl naphth-2-ol derivatives and their antimicrobial potential. NEW J CHEM 2020. [DOI: 10.1039/d0nj01924k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heterogeneous silver nanoparticles produced by Streptomyces sp. RAB 10, were used as bio-catalysts in a three-component reaction in aqueous media.
Collapse
Affiliation(s)
- Ganji Praveena
- Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research
| | - Swetha Yagnam
- Academy of Scientific and Innovative Research
- AcSIR CSIR-IICT Campus
- Hyderabad
- India
- Catalysis and Fine Chemicals Division
| | - Linga Banoth
- Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research
| | - Rajiv Trivedi
- Academy of Scientific and Innovative Research
- AcSIR CSIR-IICT Campus
- Hyderabad
- India
- Catalysis and Fine Chemicals Division
| | - Reddy Shetty Prakasham
- Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
15
|
Garzón LM, Portilla J. Synthesis of Novel D-π-A Dyes for Colorimetric Cyanide Sensing Based on Hemicyanine-Functionalized N
-(2-Pyridyl)pyrazoles. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Luz-Mery Garzón
- Departamento de Química; Universidad de los Andes; Carrera 1 N° 18A-12 Bogotá Colombia
| | - Jaime Portilla
- Departamento de Química; Universidad de los Andes; Carrera 1 N° 18A-12 Bogotá Colombia
| |
Collapse
|
16
|
Castillo JC, Tigreros A, Coquerel Y, Rodríguez J, Macías MA, Portilla J. Synthesis of Pyrrolo[2,3- c]isoquinolines via the Cycloaddition of Benzyne with Arylideneaminopyrroles: Photophysical and Crystallographic Study. ACS OMEGA 2019; 4:17326-17339. [PMID: 31656906 PMCID: PMC6811864 DOI: 10.1021/acsomega.9b02043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
An efficient and quick access toward a series of (E)-2-arylideneaminopyrroles 6 and to their benzyne-promoted aza-Diels-Alder cycloaddition products is provided. These products are three pyrrolo[2,3-c]isoquinolines 8a-c substituted in position 5 with different electron-acceptor (A) or electron-donor (D) aryl groups. Intermediates and products were obtained in good yields (up to 78 and 84%, respectively), and their structures were determined on the basis of NMR measurements and HRMS analysis. Photophysical properties of 8a-c were investigated, finding good Stokes shift in different solvents, but only the product 8c showed appreciable fluorescence intensity since its 5-aryl group (2,4-Cl2Ph) could favor the twisted intramolecular charge transfer effect. In addition, a riveting relationship between solvent viscosity and fluorescence intensity was found. Structures of 6 and 8 were studied and confirmed by single-crystal X-ray diffraction, observing that their electronic distributions effect the supramolecular assembly but with only long-distance hydrophobic interactions. A CE-B3LYP model was used to study the energetic topology and understand the crystal architecture of compounds as well as find a connection with both the synthetic and photophysical results.
Collapse
Affiliation(s)
- Juan-Carlos Castillo
- Bioorganic
Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
- Escuela
de Ciencias Química, Universidad
Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Alexis Tigreros
- Bioorganic
Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Yoann Coquerel
- Aix
Marseille Université, CNRS, Centrale Marseille, ISM2, Marseille 13288, France
| | - Jean Rodríguez
- Aix
Marseille Université, CNRS, Centrale Marseille, ISM2, Marseille 13288, France
| | - Mario A. Macías
- Department
of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia
| | - Jaime Portilla
- Bioorganic
Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| |
Collapse
|
17
|
Orrego-Hernández J, Cobo J, Portilla J. Synthesis, Photophysical Properties, and Metal-Ion Recognition Studies of Fluoroionophores Based on 1-(2-Pyridyl)-4-Styrylpyrazoles. ACS OMEGA 2019; 4:16689-16700. [PMID: 31616852 PMCID: PMC6788039 DOI: 10.1021/acsomega.9b02796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 05/20/2023]
Abstract
A convenient access toward novel fluoroionophores based on 1-(2-pyridyl)-4-styrylpyrazoles (PSPs) substituted at position 3 with donor or acceptor aryl groups is reported. The synthesis proceeds in two steps: the first one via Wittig olefination of the appropriate 4-formylpyrazole and then Mizoroki-Heck coupling to yield the desired products in an overall yield of up to 69%. Photophysical properties of products (4-styryl) and their intermediates (4-vinyl) were explored, finding that they have strong blue-light emission with high quantum yields (up to 66%) due to ICT phenomena. The 3-phenyl PSP was studied as a turn-off fluorescent probe in metal ion sensing, finding a high selectivity to Hg2+ (LOD = 3.1 × 10-7 M) in a process that could be reversed with ethylenediamine. The sensing mechanism and binding mode of the ligand to Hg2+ were established by HRMS analysis and 1H NMR titration tests.
Collapse
Affiliation(s)
- Jessica Orrego-Hernández
- Bioorganic Compounds
Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, 111711 Bogotá, Colombia
| | - Justo Cobo
- Departamento de Química Inorgánica y Orgánica
Campus las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain
| | - Jaime Portilla
- Bioorganic Compounds
Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, 111711 Bogotá, Colombia
| |
Collapse
|