1
|
Lima AF, Justo GZ, Sousa AA. Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1208-1226. [PMID: 39376728 PMCID: PMC11457047 DOI: 10.3762/bjnano.15.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024]
Abstract
Ultrasmall nanoparticles (usNPs) have emerged as promising theranostic tools in cancer nanomedicine. With sizes comparable to globular proteins, usNPs exhibit unique physicochemical properties and physiological behavior distinct from larger particles, including lack of protein corona formation, efficient renal clearance, and reduced recognition and sequestration by the reticuloendothelial system. In cancer treatment, usNPs demonstrate favorable tumor penetration and intratumoral diffusion. Active targeting strategies, incorporating ligands for specific tumor receptor binding, serve to further enhance usNP tumor selectivity and therapeutic performance. Numerous preclinical studies have already demonstrated the potential of actively targeted usNPs, revealing increased tumor accumulation and retention compared to non-targeted counterparts. In this review, we explore actively targeted inorganic usNPs, highlighting their biological properties and behavior, along with applications in both preclinical and clinical settings.
Collapse
Affiliation(s)
- André F Lima
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Giselle Z Justo
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| |
Collapse
|
2
|
Zhao P, Hu HZ, Chen XT, Jiang QY, Yu XZ, Cen XL, Lin SQ, Mai SQ, Pang WL, Chen JX, Zhang Q. Mild hyperthermia enhanced synergistic uric acid degradation and multiple ROS elimination for an effective acute gout therapy. J Nanobiotechnology 2024; 22:275. [PMID: 38778401 PMCID: PMC11112921 DOI: 10.1186/s12951-024-02539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Acute gouty is caused by the excessive accumulation of Monosodium Urate (MSU) crystals within various parts of the body, which leads to a deterioration of the local microenvironment. This degradation is marked by elevated levels of uric acid (UA), increased reactive oxygen species (ROS) production, hypoxic conditions, an upsurge in pro-inflammatory mediators, and mitochondrial dysfunction. RESULTS In this study, we developed a multifunctional nanoparticle of polydopamine-platinum (PDA@Pt) to combat acute gout by leveraging mild hyperthermia to synergistically enhance UA degradation and anti-inflammatory effect. Herein, PDA acts as a foundational template that facilitates the growth of a Pt shell on the surface of its nanospheres, leading to the formation of the PDA@Pt nanomedicine. Within this therapeutic agent, the Pt nanoparticle catalyzes the decomposition of UA and actively breaks down endogenous hydrogen peroxide (H2O2) to produce O2, which helps to alleviate hypoxic conditions. Concurrently, the PDA component possesses exceptional capacity for ROS scavenging. Most significantly, Both PDA and Pt shell exhibit absorption in the Near-Infrared-II (NIR-II) region, which not only endow PDA@Pt with superior photothermal conversion efficiency for effective photothermal therapy (PTT) but also substantially enhances the nanomedicine's capacity for UA degradation, O2 production and ROS scavenging enzymatic activities. This photothermally-enhanced approach effectively facilitates the repair of mitochondrial damage and downregulates the NF-κB signaling pathway to inhibit the expression of pro-inflammatory cytokines. CONCLUSIONS The multifunctional nanomedicine PDA@Pt exhibits exceptional efficacy in UA reduction and anti-inflammatory effects, presenting a promising potential therapeutic strategy for the management of acute gout.
Collapse
Affiliation(s)
- Pei Zhao
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510663, Guangdong, China
| | - Hua-Zhong Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510663, Guangdong, China
| | - Xiao-Tong Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qi-Yun Jiang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510663, Guangdong, China
| | - Xue-Zhao Yu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510663, Guangdong, China
| | - Xiao-Lin Cen
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510663, Guangdong, China
| | - Shi-Qing Lin
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510663, Guangdong, China
| | - Sui-Qing Mai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510663, Guangdong, China
| | - Wei-Lin Pang
- School of Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Qun Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510663, Guangdong, China.
| |
Collapse
|
3
|
Huang J, Xu S, Liu L, Zhang J, Xu J, Zhang L, Zhou X, Huang L, Peng J, Wang J, Gong Z, Chen Y. Targeted treatment of atherosclerosis with protein-polysaccharide nanoemulsion co-loaded with photosensitiser and upconversion nanoparticles. J Drug Target 2023; 31:1111-1127. [PMID: 37962293 DOI: 10.1080/1061186x.2023.2284093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Macrophages are the most abundant cell group in atherosclerosis (AS) lesions and play a vital role in all stages of AS progression. Recent research has shown that reactive oxygen species (ROS) generation from photodynamic therapy (PDT) induces macrophage autophagy to improve abnormal lipid metabolism and inflammatory environment. Especially in macrophage-derived foam cells, which has become a potential strategy for the treatment of AS. In this study, we prepared the conjugate (DB) of dextran (DEX) and bovine serum albumin (BSA). The DB was used as the emulsifier to prepare nanoemulsion loaded with upconversion nanoparticles (UCNPs) and chlorin e6 (Ce6) (UCNPs-Ce6@DB). The DEX modified on the surface of the nanoemulsion can recognise and bind to the scavenger receptor class A (SR-A) highly expressed on macrophages and promote the uptake of macrophage-derived foam cells in AS plates through SR-A-mediated endocytosis. In addition, UCNPs-Ce6@DB-mediated PDT enhanced ROS generation and induced autophagy in macrophage-derived foam cells, enhanced the expression of ABCA1, a protein closely related to cholesterol efflux, and inhibited the secretion of pro-inflammatory cytokines. Ultimately, UCNPs-Ce6@DB was shown to inhibit plaque formation in mouse models of AS. In conclusion, UCNPs-Ce6@DB offers a promising treatment for AS.
Collapse
Affiliation(s)
- Jing Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shan Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lina Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jiyuan Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jinzhuan Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lili Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiang Zhou
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lei Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jianqing Peng
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jianing Wang
- Department of Pharmacy, The Affiliated Jiangning Hospital with Nanjing Medical University, Jiangsu, Nanjing, China
| | - Zipeng Gong
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yi Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Li T, Huang J, Wang M, Wang H. Microfluidic assembly of small-molecule prodrug cocktail nanoparticles with high reproducibility for synergistic combination of cancer therapy. Int J Pharm 2021; 608:121088. [PMID: 34530101 DOI: 10.1016/j.ijpharm.2021.121088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/22/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022]
Abstract
Therapeutic nanoparticles (NPs) self-assembled from small molecular (pro)drug entities, opens up novel avenues for the generation of a wide range of drug delivery systems. Particularly, cocktail NPs created by co-assembly of multiple therapeutics often show profound efficacy beyond their individual agents. However, fabrication of synergistic NPs with high reproducibility and capability to deliver multiple therapeutics in a predefined ratio remains a challenge, which deters NP therapeutics from further clinical translation. In this work, a simple but versatile strategy has been developed to combine drug reconstitution and supramolecular nanoassembly to prodrug cocktail nanoparticle fabrication with microfluidics. Prodrugs reconstructed by PUFAylation were self-assembled into hybrid nanoparticles via microfluidic chip to synergistically deliver two chemotherapeutic drugs, 7-ethyl-10-hydroxy camptothecin (SN38) and paclitaxel (PTX), in a single nanoparticle container. In vitro cell-based assays demonstrate that the combinatorial chemotherapy is superior to each prodrug used alone while reduces the dosage of both drugs at the same time. Furthermore, the double-drug combination suppresses colon tumors by 86% at a total dosage of 16.7 mg/kg through synergy, and histological analysis indicates the safety of the hybrid nanoparticles. In general, this work shows that the nanomedicine synthesized by microfluidics provides considerable advantages including better size control and reproducibility, and great potential in effective combination therapy. It is expected to be applied to the fabrication of more chemical agent combination for other cancer types.
Collapse
Affiliation(s)
- Tingting Li
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Jiangling Huang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Min Wang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.
| | - Hangxiang Wang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, PR China.
| |
Collapse
|
5
|
Sousa AA, Schuck P, Hassan SA. Biomolecular interactions of ultrasmall metallic nanoparticles and nanoclusters. NANOSCALE ADVANCES 2021; 3:2995-3027. [PMID: 34124577 PMCID: PMC8168927 DOI: 10.1039/d1na00086a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 05/03/2023]
Abstract
The use of nanoparticles (NPs) in biomedicine has made a gradual transition from proof-of-concept to clinical applications, with several NP types meeting regulatory approval or undergoing clinical trials. A new type of metallic nanostructures called ultrasmall nanoparticles (usNPs) and nanoclusters (NCs), while retaining essential properties of the larger (classical) NPs, have features common to bioactive proteins. This combination expands the potential use of usNPs and NCs to areas of diagnosis and therapy traditionally reserved for small-molecule medicine. Their distinctive physicochemical properties can lead to unique in vivo behaviors, including improved renal clearance and tumor distribution. Both the beneficial and potentially deleterious outcomes (cytotoxicity, inflammation) can, in principle, be controlled through a judicious choice of the nanocore shape and size, as well as the chemical ligands attached to the surface. At present, the ability to control the behavior of usNPs is limited, partly because advances are still needed in nanoengineering and chemical synthesis to manufacture and characterize ultrasmall nanostructures and partly because our understanding of their interactions in biological environments is incomplete. This review addresses the second limitation. We review experimental and computational methods currently available to understand molecular mechanisms, with particular attention to usNP-protein complexation, and highlight areas where further progress is needed. We discuss approaches that we find most promising to provide relevant molecular-level insight for designing usNPs with specific behaviors and pave the way to translational applications.
Collapse
Affiliation(s)
- Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo São Paulo SP 04044 Brazil
| | - Peter Schuck
- National Institute of Biomedical Imaging and Bioengineering, NIH Bethesda MD 20892 USA
| | - Sergio A Hassan
- BCBB, National Institute of Allergy and Infectious Diseases, NIH Bethesda MD 20892 USA
| |
Collapse
|
6
|
Ferreira RS, Lira AL, Sousa AA. Quantitative mechanistic model for ultrasmall nanoparticle-protein interactions. NANOSCALE 2020; 12:19230-19240. [PMID: 32929438 DOI: 10.1039/d0nr04846a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To date, extensive effort has been devoted toward the characterization of protein interactions with synthetic nanostructures. However, much remains to be understood, particularly concerning microscopic mechanisms of interactions. Here, we have conducted a detailed investigation of the kinetics of nanoparticle-protein complexation to gain deeper insights into the elementary steps and molecular events along the pathway for complex formation. Toward that end, the binding kinetics between p-mercaptobenzoic acid-coated ultrasmall gold nanoparticles (AuMBA) and fluorescently-labeled ubiquitin was investigated at millisecond time resolution using stopped-flow spectroscopy. It was found that both the association and dissociation kinetics consisted of multiple exponential phases, hence suggesting a complex, multi-step reaction mechanism. The results fit into a picture where complexation proceeds through the formation of a weakly-bound first-encounter complex with an apparent binding affinity (KD) of ∼9 μM. Encounter complex formation is followed by unimolecular tightening steps of partial desolvation/ion removal and conformational rearrangement, which, collectively, achieve an almost 100-fold increase in affinity of the final bound state (apparent KD ∼0.1 μM). The final state is found to be weakly stabilized, displaying an average lifetime in the range of seconds. Screening of the electrostatic forces at high ionic strength weakens the AuMBA-ubiquitin interactions by destabilizing the encounter complex, whereas the average lifetime of the final bound state remains largely unchanged. Overall, our rapid kinetics investigation has revealed novel quantitative insights into the molecular-level mechanisms of ultrasmall nanoparticle-protein interactions.
Collapse
Affiliation(s)
- Rodrigo S Ferreira
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil.
| | - André L Lira
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil.
| | - Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil.
| |
Collapse
|
7
|
Knittel LL, Zhao H, Nguyen A, Miranda A, Schuck P, Sousa AA. Ultrasmall Gold Nanoparticles Coated with Zwitterionic Glutathione Monoethyl Ester: A Model Platform for the Incorporation of Functional Peptides. J Phys Chem B 2020; 124:3892-3902. [PMID: 32352799 PMCID: PMC8435207 DOI: 10.1021/acs.jpcb.0c01444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultrasmall gold nanoparticles (AuNPs) are an emerging class of nanomaterials exhibiting distinctive physicochemical, molecular, and in vivo properties. Recently, we showed that ultrasmall AuNPs encompassing a zwitterionic glutathione monoethyl ester surface coating (AuGSHzwt) were highly resistant to aggregation and serum protein interactions. Herein, we performed a new set of biointeraction studies to gain a more fundamental understanding into the behavior of both pristine and peptide-functionalized AuGSHzwt in complex media. Using the model Strep-tag peptide (WSHPQFEK) as an integrated functional group, we established that AuGSHzwt could be conjugated with increasing numbers of Strep-tags by simple ligand exchange, which provides a generic approach for AuGSHzwt functionalization. It was found that the strep-tagged AuGSHzwt particles were highly resistant to nonspecific protein interactions and retained their targeting capability in biological fluid, displaying efficient binding to Streptactin receptors in nearly undiluted serum. However, AuGSHzwt functionalized with multiple Strep-tags displayed somewhat lower resistance to protein interactions and lower levels of binding to Streptactin than monofunctionalized AuGSHzwt under given conditions. These results underscore the need for optimizing ligand density onto the surface of ultrasmall AuNPs for improved performance. Collectively, our findings support ultrasmall AuGSHzwt as an attractive platform for engineering functional, protein-mimetic nanostructures capable of specific protein recognition within the complex biological milieu.
Collapse
Affiliation(s)
- Luiza L. Knittel
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Huaying Zhao
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Ai Nguyen
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Antônio Miranda
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Peter Schuck
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Alioscka A. Sousa
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|