1
|
Sodia TZ, Tetu HL, Saccomano SC, Letch EG, Branning JM, Mendonsa AA, Vyas S, Cash KJ. Persistent Luminescence Nanosensors: A Generalized Optode-Based Platform for Autofluorescence-Free Sensing in Biological Systems. ACS Sens 2024; 9:3307-3315. [PMID: 38826054 DOI: 10.1021/acssensors.4c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Fluorescent nanosensors have revolutionized diagnostics and our ability to monitor cellular dynamics. Yet, distinguishing sensor signals from autofluorescence remains a challenge. Here, we merged optode-based sensing with near-infrared-emitting ZnGa2O4:Cr3+ persistent luminescence nanoparticles (PLNPs) to create nanocomposites for autofluorescence-free "glow-in-the-dark" sensing. Hydrophobic modification and incorporation of the persistent luminescence nanoparticles into an optode-based nanoparticle core yielded persistent luminescence nanosensors (PLNs) for five analytes (K+, Na+, Ca2+, pH, and O2) via two distinct mechanisms. We demonstrated the viability of the PLNs by quantifying K+ in fetal bovine serum, calibrating the pH PLNs in the same, and ratiometrically monitoring O2 metabolism in cultures of Saccharomyces cerevisiae, all the while overcoming their respective autofluorescence signatures. This highly modular platform allows for facile tuning of the sensing functionality, optical properties, and surface chemistry and promises high signal-to-noise ratios in complex optical environments.
Collapse
Affiliation(s)
- Tyler Z Sodia
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Hanna L Tetu
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Samuel C Saccomano
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Elizabeth G Letch
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| | - John M Branning
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
- The MITRE Corporation, Bedford, Massachusetts 01730, United States
| | - Adrian A Mendonsa
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Shubham Vyas
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kevin J Cash
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
2
|
Folz J, Wasserman JH, Jo J, Wang X, Kopelman R. Photoacoustic Chemical Imaging Sodium Nano-Sensor Utilizing a Solvatochromic Dye Transducer for In Vivo Application. BIOSENSORS 2023; 13:923. [PMID: 37887116 PMCID: PMC10605089 DOI: 10.3390/bios13100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Sodium has many vital and diverse roles in the human body, including maintaining the cellular pH, generating action potential, and regulating osmotic pressure. In cancer, sodium dysregulation has been correlated with tumor growth, metastasis, and immune cell inhibition. However, most in vivo sodium measurements are performed via Na23 NMR, which is handicapped by slow acquisition times, a low spatial resolution (in mm), and low signal-to-noise ratios. We present here a plasticizer-free, ionophore-based sodium-sensing nanoparticle that utilizes a solvatochromic dye transducer to circumvent the pH cross-sensitivity of most previously reported sodium nano-sensors. We demonstrate that this nano-sensor is non-toxic, boasts a 200 μM detection limit, and is over 1000 times more selective for sodium than potassium. Further, the in vitro photoacoustic calibration curve presented demonstrates the potential of this nano-sensor for performing the in vivo chemical imaging of sodium over the entire physiologically relevant concentration range.
Collapse
Affiliation(s)
- Jeff Folz
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Janggun Jo
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.J.); (X.W.)
| | - Xueding Wang
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.J.); (X.W.)
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
3
|
Maki K, Oishi R, Mizuta T, Sueyoshi K, Endo T, Hisamoto H. Chloride ion-selective dye liquid nanoemulsion: improved sensor performance due to intermolecular interactions between dye and ionophore. Analyst 2022; 147:1529-1533. [DOI: 10.1039/d2an00115b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionophore-based dye liquid nanoemulsion sensors exhibiting rapid response, high selectivity, and high sensitivity to chloride were developed. Intermolecular interactions within emulsion contributed to the background suppression.
Collapse
Affiliation(s)
- Kaho Maki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Ryoutarou Oishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Tatsumi Mizuta
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 5-3 Yonban-cho, Chiyoda, Tokyo 102-8666, Japan
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
4
|
Sodia T, David AA, Chesney AP, Perri JN, Gutierrez GE, Nepple CM, Isbell SM, Cash KJ. Nanoparticle-Based Liquid-Liquid Extraction for the Determination of Metal Ions. ACS Sens 2021; 6:4408-4416. [PMID: 34793121 PMCID: PMC8715536 DOI: 10.1021/acssensors.1c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022]
Abstract
Traditional liquid phase extraction techniques that use optically responsive ligands provide benefits that enable cost-efficient and rapid measurements. However, these approaches have limitations in their excessive use of organic solvents and multistep procedures. Here, we developed a simple, nanoscale extraction approach by replacing the macroscopic organic phase with hydrophobic polymeric nanoparticles that are dispersed in an aqueous feed. The concentration of analytes in polymeric nanoparticle suspensions is governed by similar partition principles to liquid-liquid phase extraction techniques. By encasing optically responsive metal ligands inside polymeric nanoparticles, we introduce a one-step metal quantification assay based on traditional two-phase extraction methodologies. As an initial proof of concept, we encapsulated bathophenanthroline (BP) inside the particles to extract then quantify Fe2+ with colorimetry in a dissolved supplement tablet and creek water. These Fe2+ nanosensors are sensitive and selective and report out with fluorescence by adding a fluorophore (DiO) into the particle core. To show that this new rapid extraction assay is not exclusive to measuring Fe2+, we replaced BP with either 8-hydroxyquinoline or bathocuproine to measure Al3+ or Cu+, respectively, in water samples. Utilizing this nanoscale extraction approach will allow users to rapidly quantify metals of interest without the drawbacks of larger-scale phase extraction approaches while also allowing for the expansion of phase extraction methodologies into areas of biological research.
Collapse
Affiliation(s)
- Tyler
Z. Sodia
- Quantitative
Biosciences and Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Alexa A. David
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Ashley P. Chesney
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Juliana N. Perri
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | | | - Cecilia M. Nepple
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Sydney M. Isbell
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Kevin J. Cash
- Quantitative
Biosciences and Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
5
|
Jewell MP, Greer MD, Dailey AL, Cash KJ. Triplet-Triplet Annihilation Upconversion Based Nanosensors for Fluorescence Detection of Potassium. ACS Sens 2020; 5:474-480. [PMID: 31912733 DOI: 10.1021/acssensors.9b02252] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Typical ionophore-based nanosensors use Nile blue derived indicators called chromoionophores, which must contend with strong background absorption, autofluorescence, and scattering in biological samples that limit their usefulness. Here, we demonstrate potassium-selective nanosensors that utilize triplet-triplet annihilation upconversion to minimize potential optical interference in biological media and a pH-sensitive quencher molecule to modulate the upconversion intensity in response to changes in analyte concentration. A triplet-triplet annihilation dye pair (platinum(II) octaethylporphyrin and 9,10-diphenylanthracene) was integrated into nanosensors containing an analyte binding ligand (ionophore), charge-balancing additive, and a pH indicator quencher. The nanosensor response to potassium was shown to be reversible and stable for 3 days. In addition, the nanosensors are selective against sodium, calcium, and magnesium (selectivity coefficients in log10 units of -2.2 for calcium, -2.0 for sodium, and -2.4 for magnesium), three interfering ions found in biological samples. The lack of signal overlap between the upconversion nanosensors and GFP, a common biological fluorescent indicator, is demonstrated in confocal microscope images of sensors embedded in a bacterial biofilm.
Collapse
Affiliation(s)
- Megan P. Jewell
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Meredith D. Greer
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexandra L. Dailey
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kevin J. Cash
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
6
|
Jewell MP, Saccomano SC, David AA, Harris JK, Zemanick ET, Cash KJ. Nanodiagnostics to monitor biofilm oxygen metabolism for antibiotic susceptibility testing. Analyst 2020; 145:3996-4003. [DOI: 10.1039/d0an00479k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A method utilizing oxygen-sensitive nanosensor technology to monitor the oxygen consumption dynamics of living biofilms as they are exposed to antibiotics. This method provides information on the MBIC as well as kinetic response.
Collapse
Affiliation(s)
- Megan P. Jewell
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - Samuel C. Saccomano
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - Alexa A. David
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - J. Kirk Harris
- Department of Pediatrics
- School of Medicine
- University of Colorado – Anschutz Medical Campus
- Aurora
- USA
| | - Edith T. Zemanick
- Department of Pediatrics
- School of Medicine
- University of Colorado – Anschutz Medical Campus
- Aurora
- USA
| | - Kevin J. Cash
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
- Quantitative Biosciences and Engineering
| |
Collapse
|