1
|
Seifi A, Afkhami A, Madrakian T. Improved MnO 2 based electrode performance arising from step by step heat treatment during electrodeposition of MnO 2 for determination of paracetamol, 4-aminophenol, and 4-nitrophenol. Sci Rep 2024; 14:26577. [PMID: 39496733 PMCID: PMC11535433 DOI: 10.1038/s41598-024-78487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 11/06/2024] Open
Abstract
The design of electrochemical sensors is crucial considering important factors such as efficiency, low cost, biocompatibility, and availability. Manganese oxides are readily available, low-cost, and biocompatible materials, but their low conductivity limits their efficiency as sensors. Today, morphology engineering of manganese oxide has been one of the most common research topics, because manganese oxides' electrochemical properties are highly dependent on their morphologies. In this study, a method for reducing the charge transfer resistance (Rct) of MnO2-based electrodes was established by the cyclic voltammetry technique accompanied by step-by-step heat treatment to electrodeposition MnO2 nanofilm, which remarkably improved the Rct. Next, the sensing performance of MnO2/FTO for two separate measurements was examined, one for the simultaneous measurement of paracetamol (PAR) and 4-aminophenol (4-APh), and the other for the measurement of 4-nitrophenol (4-NP). Under the optimum conditions, the linear ranges of 4-APh, PAR, and 4-NP, were 0.8 to 22.0 µM, 2.0 to 55.0 µM, and 0.1-250 µM, with limits of detection (LOD) of 0.19 µM, 0.60 µM, and 0.01 µM, respectively. It also was unaffected by a 200-fold excess of interferences. In addition, the designed sensor was successfully applied to the analysis of real samples.
Collapse
Affiliation(s)
- Afsaneh Seifi
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
- D-8 International University, Hamedan, Iran.
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
2
|
Manickaraj SSM, Pandiyarajan S, Liao AH, Ramanathan S, Baskaran G, Selvaraj M, A Assiri M, Chuang HC. Supercritical-CO 2 mediated preparation of porous carbon from Araucaria heterophylla biomass: A proficient nanomolar detection platform for phenolic water pollutant. CHEMOSPHERE 2024; 364:143050. [PMID: 39121967 DOI: 10.1016/j.chemosphere.2024.143050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/23/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
4-aminophenol (AP), an aromatic phenolic compound, is commonly found in commercial products that eventually enter and pollute environmental water sources. The precise detection and quantification of AP in environmental samples are critical for comprehensively assessing contamination levels, safeguarding public health, and formulating effective remediation strategies. In the shed of light, this work proposes an electrochemical sensing platform for detecting and quantifying AP using Araucaria heterophylla biomass-derived activated carbon (AH-AC) prepared via the SC-CO2 pathway. To evaluate the significance of SC-CO2-mediated chemical activation (SC-AHAC), a comparative study with conventional activation methods (C-AHAC) was also conducted. The physical characterizations such as structural, morphological, optical, and elemental analysis demonstrate the greater ID/IG value and enhanced surface functionalities of SC-AHAC than C-AHAC. The obtained lower empirical factor (R) value of 1.89 for SC-AHAC suggests increased disorder and a higher presence of single-layer amorphous carbon compared to C-AHAC (2.03). In the electrochemical analysis, the active surface area of the SC-AHAC modified electrode (0.069 cm2) is higher than that of the C-AHAC modified electrode (0.061 cm2), demonstrating the significance of SC-CO2 activation. Further, the quantitative analysis on SC-AHAC@SPCE resulted in a sensitivity of 3.225 μA μM-1 cm-2 with the detection limit and quantification limit of 2.13 and 7.11 nM L-1, respectively, in the linear range of 0.01-582.5 μM L-1 at the oxidation potential of 0.13V. This suggests that the prepared SC-AHAC could be a promising electrocatalyst for AP detection in the environmental and healthcare sectors.
Collapse
Affiliation(s)
- Shobana Sebastin Mary Manickaraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106344, Taiwan; Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Sabarison Pandiyarajan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106344, Taiwan; Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan; Department of Biomedical Engineering, National Defense Medical Center, Taipei, 114201, Taiwan
| | - Subramanian Ramanathan
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan.
| |
Collapse
|
3
|
El Zein R, Ispas-Szabo P, Jafari M, Siaj M, Mateescu MA. Oxidation of Mesalamine under Phenoloxidase- or Peroxidase-like Enzyme Catalysis. Molecules 2023; 28:8105. [PMID: 38138595 PMCID: PMC10871084 DOI: 10.3390/molecules28248105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Mesalamine, also called 5-ASA (5-aminosalicylic acid), is a largely used anti-inflammatory agent and is a main choice to treat Ulcerative Colitis. This report is aimed to investigate enzymatic processes involved in the oxidation of mesalamine to better understand some of its side-effects. Oxidation with oxygen (catalyzed by ceruloplasmin) or with hydrogen peroxide (catalyzed by peroxidase or hemoglobin) showed that these oxidases, despite their different mechanisms of oxidation, could recognize mesalamine as a substrate and trigger its oxidation to a corresponding quinone-imine. These enzymes were chosen because they may recognize hydroquinone (a p-diphenol) as substrate and oxidize it to p-benzoquinone and that mesalamine, as a p-aminophenol, presents some similarities with hydroquinone. The UV-Vis kinetics, FTIR and 1H NMR supported the hypothesis of oxidizing mesalamine. Furthermore, mass spectrometry suggested the quinone-imine as reaction product. Without enzymes, the oxidation process was very slow (days and weeks), but it was markedly accelerated with the oxidases, particularly with peroxidase. Cyclic voltammetry supported the hypothesis of the oxidative process and allowed a ranking of susceptibility to oxidizing mesalamine in comparison with other oxidizable drug molecules with related structures. The susceptibility to oxidation was higher for mesalamine, in comparison with Tylenol (acetaminophen) and with aspirin (salicylic acid).
Collapse
Affiliation(s)
| | | | | | | | - Mircea Alexandru Mateescu
- Department of Chemistry and Center CERMO-FC, Université du Québec à Montréal, Downtown Branch, P.O. Box 8888, Montréal, QC H3C 3P8, Canada; (R.E.Z.); (P.I.-S.); (M.J.); (M.S.)
| |
Collapse
|
4
|
Sekar S, Yun JS, Lee S. Metal-free electrocatalytic nanocomposites of poly azovan blue-decorated graphitic carbon nitride for simultaneously sensing paracetamol and 4-aminophenol. ENVIRONMENTAL RESEARCH 2023; 239:117293. [PMID: 37816424 DOI: 10.1016/j.envres.2023.117293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Excessive consumption of paracetamol (PA) and 4-aminophenol (4-AP) can have harmful effects on the human body. This study developed a novel electroanalytical technique that utilizes the nanocomposites of poly azovan blue (PAB)-decorated graphitic carbon nitride (g-C3N4), deposited onto a screen-printed carbon electrode (SPCE), for the concurrent sensing of PA and 4-AP. The fabricated g-C3N4@PAB/SPCE exhibited exceptional synergistic effects, such as a high active electrochemical surface area and excellent electron transfer properties. The electrochemical behavior of g-C3N4@PAB/SPCE for simultaneous PA and 4-AP sensing was evaluated in the linear dynamic ranges of 0.08-75 and 0.05-90 μM, with the detection limits (S/N = 3) of 0.011 and 0.016 μM and sensitivities of 2.974 and 2.857 μA/μM/cm-2 for PA and 4-AP, respectively. Additionally, g-C3N4@PAB/SPCE showed long-term stability, high reproducibility (RSD = 2.17%, n = 4), and superior anti-interference capabilities. Finally, when g-C3N4@PAB/SPCE was tested for simultaneously sensing both PA and 4-AP in tap water and artificial urine models, it exhibited satisfactory recoveries, demonstrating its potential use for various industrial and clinical applications.
Collapse
Affiliation(s)
- Sankar Sekar
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul, 04620, Republic of Korea; Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Ji-Seop Yun
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul, 04620, Republic of Korea; Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Sejoon Lee
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul, 04620, Republic of Korea; Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
5
|
Cheng H, Zhang L, Feng J, Tang T, Qin D. A novel sensor based on Ti 3C 2 MXene/Co 3O 4/carbon nanofibers composite for the sensitive detection of 4-aminophenol. CHEMOSPHERE 2023; 341:139981. [PMID: 37648159 DOI: 10.1016/j.chemosphere.2023.139981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
A novel, sensitive Ti3C2 MXene/Co3O4/carbon nanofibers (Ti3C2 MXene/Co3O4/CNFs) composite was synthesized via a HF exfoliating Ti3AlC2 strategy, followed by doping Co3O4 and Ti3C2 MXene into the CNFs via a combination electrospinning and thermal annealing process. Ti3C2 MXene/Co3O4/CNFs composite exhibits higher catalytic effect, conductivity, chemical stability, and electrochemical performance than Co3O4 and Ti3C2 MXene in electrochemical impedance, differential pulse stripping voltammetry, chronocoulometry, and cyclic voltammetry tests. This Ti3C2 MXene/Co3O4/CNFs hybrid modified electrode provides fast analysis of 4-aminophenol (4-AP) with ultrahigh sensitivity, enhanced reproducibility and strong anti-interference capability. Furthermore, the level of 4-AP was quantified by this electrode with a wide linear range from 0.5 to 150 μM (R2 > 0.99) and a low detection limit about 0.018 μM was achieved. Finally, the fabricated electrode was used for fast and sensitive analysis of 4-AP spiked in tap water and blood serum samples. This work presents the new Ti3C2 MXene/Co3O4/CNFs electrode provides a platform for 4-AP monitoring and has the advantages of high selectivity, accuracy, simplicity, and rapid analysis.
Collapse
Affiliation(s)
- Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China; Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Province, PR China
| | - Liwen Zhang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China; School of Medicine Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China
| | - Tingfan Tang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China
| | - Danfeng Qin
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China; School of Medicine Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi Province, PR China.
| |
Collapse
|
6
|
Dourandish Z, Sheikhshoaie I, Maghsoudi S. Molybdenum Disulfide/Nickel-Metal Organic Framework Hybrid Nanosheets Based Disposable Electrochemical Sensor for Determination of 4-Aminophenol in Presence of Acetaminophen. BIOSENSORS 2023; 13:bios13050524. [PMID: 37232885 DOI: 10.3390/bios13050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
The toxicity of commonly used drugs, such as acetaminophen (ACAP) and its degradation-derived metabolite of 4-aminophenol (4-AP), underscores the need to achieve an effective approach in their simultaneous electrochemical determination. Hence, the present study attempts to introduce an ultra-sensitive disposable electrochemical 4-AP and ACAP sensor based on surface modification of a screen-printed graphite electrode (SPGE) with a combination of MoS2 nanosheets and a nickel-based metal organic framework (MoS2/Ni-MOF/SPGE sensor). A simple hydrothermal protocol was implemented to fabricate MoS2/Ni-MOF hybrid nanosheets, which was subsequently tested for properties using valid techniques including X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transformed infrared spectroscopy (FTIR), and N2 adsorption-desorption isotherm. The 4-AP detection behavior on MoS2/Ni-MOF/SPGE sensor was followed by cyclic voltammetry (CV), chronoamperometry and differential pulse voltammetry (DPV). Our experimental findings on the generated sensor confirmed a broad linear dynamic range (LDR) for 4-AP from 0.1 to 600 μM with a high sensitivity of 0.0666 μA/μM and a low limit of detection (LOD) of 0.04 μM. In addition, an analysis of real specimens such as tap water sample as well as a commercial sample (acetaminophen tablets) illuminated the successful applicability of as-developed sensor in determining ACAP and 4-AP, with an impressive recovery rate.
Collapse
Affiliation(s)
- Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Shahab Maghsoudi
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| |
Collapse
|
7
|
Mulyasuryani A, Prananto YP, Fardiyah Q, Widwiastuti H, Darjito D. Application of Chitosan-Based Molecularly Imprinted Polymer in Development of Electrochemical Sensor for p-Aminophenol Determination. Polymers (Basel) 2023; 15:polym15081818. [PMID: 37111963 PMCID: PMC10144842 DOI: 10.3390/polym15081818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Molecularly Imprinted Polymers (MIPs) have specific recognition capabilities and have been widely used for electrochemical sensors with high selectivity. In this study, an electrochemical sensor was developed for the determination of p-aminophenol (p-AP) by modifying the screen-printed carbon electrode (SPCE) with chitosan-based MIP. The MIP was made from p-AP as a template, chitosan (CH) as a base polymer, and glutaraldehyde and sodium tripolyphosphate as the crosslinkers. MIP characterization was conducted based on membrane surface morphology, FT-IR spectrum, and electrochemical properties of the modified SPCE. The results showed that the MIP was able to selectively accumulate analytes on the electrode surface, in which MIP with glutaraldehyde as a crosslinker was able to increase the signal. Under optimum conditions, the anodic peak current from the sensor increased linearly in the range of 0.5-35 µM p-AP concentration, with sensitivity of (3.6 ± 0.1) µA/µM, detection limit (S/N = 3) of (2.1 ± 0.1) µM, and quantification limit of (7.5 ± 0.1) µM. In addition, the developed sensor exhibited high selectivity with an accuracy of (94.11 ± 0.01)%.
Collapse
Affiliation(s)
- Ani Mulyasuryani
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
| | - Yuniar Ponco Prananto
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
| | - Qonitah Fardiyah
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
| | - Hanandayu Widwiastuti
- Pharmaceutical and Food Analysis Department, Health Polytechnic, Jl. Besar Ijen 77C, Malang 65112, Indonesia
| | - Darjito Darjito
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
| |
Collapse
|
8
|
Ivanišević I. The Role of Silver Nanoparticles in Electrochemical Sensors for Aquatic Environmental Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:3692. [PMID: 37050752 PMCID: PMC10099384 DOI: 10.3390/s23073692] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
With rapidly increasing environmental pollution, there is an urgent need for the development of fast, low-cost, and effective sensing devices for the detection of various organic and inorganic substances. Silver nanoparticles (AgNPs) are well known for their superior optoelectronic and physicochemical properties, and have, therefore, attracted a great deal of interest in the sensor arena. The introduction of AgNPs onto the surface of two-dimensional (2D) structures, incorporation into conductive polymers, or within three-dimensional (3D) nanohybrid architectures is a common strategy to fabricate novel platforms with improved chemical and physical properties for analyte sensing. In the first section of this review, the main wet chemical reduction approaches for the successful synthesis of functional AgNPs for electrochemical sensing applications are discussed. Then, a brief section on the sensing principles of voltammetric and amperometric sensors is given. The current utilization of silver nanoparticles and silver-based composite nanomaterials for the fabrication of voltammetric and amperometric sensors as novel platforms for the detection of environmental pollutants in water matrices is summarized. Finally, the current challenges and future directions for the nanosilver-based electrochemical sensing of environmental pollutants are outlined.
Collapse
Affiliation(s)
- Irena Ivanišević
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Meghana Navada K, Nagaraja GK, Neetha D'Souza J, Kouser S, Ranjitha R, Ganesha A, Manasa DJ. Synthesis of Phyto-functionalized nano hematite for lung cancer suppressive activity and Paracetamol sensing by electrochemical studies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Buledi JJA, Solangi AR, Hyder A, Batool M, Mahar N, Mallah A, Karimi-Maleh H, Karaman O, Karaman C, Ghalkhani M. Fabrication of sensor based on polyvinyl alcohol functionalized tungsten oxide/reduced graphene oxide nanocomposite for electrochemical monitoring of 4-aminophenol. ENVIRONMENTAL RESEARCH 2022; 212:113372. [PMID: 35561824 DOI: 10.1016/j.envres.2022.113372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 05/24/2023]
Abstract
4-aminophenol (4-AP) is one of the major environmental pollutants which is broadly exploited as drug intermediate in the pharmaceutical formulations. The extensive release of 4-AP in the environment without treatment has become a serious issue that has led several health effects on humans. This work describe the determination of 4-AP through a new chemically modified sensor based on polyvinyl alcohol functionalized tungsten oxide/reduced graphene oxide (PVA/WO3/rGO) nanocomposite. The fabricated nanocomposite was characterized through XRD and HR-TEM to confirm the crystalline structure with average size of 35.9 nm and 2D texture with ultra-fine sheets. The electrochemical characterization of fabricated sensor was carried out by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) to ensure the charge transfer kinetics of modified sensor that revealed high conductivity of PVA/WO3/rGO/GCE. Under optimized conditions e.g. scan rate 80 mV/s, phosphate buffer (pH 6) as supporting electrolyte and potential window from -0.2 to 0.8 V, the prepared sensor showed excellent response for 4-AP. The linear dynamic range of developed method was optimized as 0.003-70 μM. The LOD of fabricated sensor based on PVA/WO3/rGO/GCE for 4-AP was calculated as 0.51 nM. The practical application of PVA/WO3/rGO/GCE was tested in real water and pharmaceutical samples. The fabricated sensor presented here, exhibited exceptional stability and sensitivity than the reported sensors and could be effectively used for the monitoring 4-AP without interferences.
Collapse
Affiliation(s)
- J Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
| | - Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Madeeha Batool
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Nasrullah Mahar
- King Fahad University of Petroleum and Minerals (KFUPM), Saudi Arabia
| | - Arfana Mallah
- M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, 76080, Sindh, Pakistan
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, P.O. Box 17011, South Africa.
| | - Onur Karaman
- Department of Medical Imaging Techniques, Akdeniz University, Antalya, 07070, Turkey
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey.
| | - Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, 1678815811, Tehran, Iran
| |
Collapse
|
11
|
Li Z, Shen F, Mishra RK, Wang Z, Zhao X, Zhu Z. Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review. Crit Rev Anal Chem 2022; 54:269-314. [PMID: 35575782 DOI: 10.1080/10408347.2022.2072679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The strong development of mankind is inseparable from the proper use of drugs, and the electroanalytical research of drugs occupies an important position in the field of analytical chemistry. This review mainly elaborates the research progress of drugs electroanalysis based on direct electrochemical redox on various electrodes for the recent decade from 2011 to 2021. At first, we summarize some frequently used electrochemical data processing and electrochemical mechanism research derivation methods in the literature. Then, according to the drug therapeutic and application/usage purposes, the research progress of drugs electrochemical analysis is classified and discussed, where we focus on drugs electrochemical reaction mechanism. At the same time, the comparisons of electrochemical sensing performance of the drugs on various electrodes from recent studies are listed, so that readers can more intuitively compare and understand the electroanalytical sensing performance of each modified electrode for each of the drug. Finally, this review discusses the shortcomings and prospects of the drugs electroanalysis based on direct electrochemical redox research.
Collapse
Affiliation(s)
- Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Feichen Shen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Rupesh K Mishra
- Identify Sensors Biologics at Bindley Bioscience Center, West Lafayette, Indiana, USA
- School of Material Science and Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xueling Zhao
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| |
Collapse
|
12
|
Bakhshi A, Saravani H, Rezvani A, Sargazi G, Shahbakhsh M. A new method of Bi-MOF nanostructures production using UAIM procedure for efficient electrocatalytic oxidation of aminophenol: a controllable systematic study. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-021-01664-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Nasraoui S, Ameur S, Al-Hamry A, Ben Ali M, Kanoun O. Development of an Efficient Voltammetric Sensor for the Monitoring of 4-Aminophenol Based on Flexible Laser Induced Graphene Electrodes Modified with MWCNT-PANI. SENSORS (BASEL, SWITZERLAND) 2022; 22:833. [PMID: 35161578 PMCID: PMC8840637 DOI: 10.3390/s22030833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023]
Abstract
Sensitive electrodes are of a great importance for the realization of highly performant electrochemical sensors for field application. In the present work, a laser-induced carbon (LIC) electrode is proposed for 4-Aminophenol (4-AP) electrochemical sensors. The electrode is patterned on a commercial low-cost polyimide (Kapton) sheet and functionalized with a multi-walled carbon nanotubes polyaniline (MWCNT-PANI) composite, realized by an in-situ-polymerization in an acidic medium. The LIC electrode modified with MWCNT-PAPNI nanocomposite was investigated by SEM, AFM, and electrochemically in the presence of ferri-ferrocyanide [Fe(CN)6]3-/4- by cyclic voltammetry and impedance spectroscopy. The results show a significant improvement of the electron transfer rate after the electrode functionalization in the presence of the redox mediators [Fe(CN)6]3-/4-, related directly to the active surface, which itself increased by about 18.13% compared with the bare LIG. The novel electrode shows a good reproducibility and a stability for 20 cycles and more. It has a significantly enhanced electro-catalytic activity towards electrooxidation reaction of 4-AP inferring positive synergistic effects between carbon nanotubes and polyaniline PANI. The presented electrode combination LIC/MWCNT-PANI exhibits a detection limit of 0.006 μM for the determination of 4-AP at concentrations ranging from 0.1 μM to 55 μM and was successfully applied for the monitoring in real samples with good recoveries.
Collapse
Affiliation(s)
- Salem Nasraoui
- Professorship of Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany;
- Centre for Research on Microelectronics and Nanotechnology of Sousse, Tunisia and NANOMISENE Lab, LR16CRMN01, University of Sousse Sahloul, Sousse 4003, Tunisia; (S.A.); (M.B.A.)
| | - Sami Ameur
- Centre for Research on Microelectronics and Nanotechnology of Sousse, Tunisia and NANOMISENE Lab, LR16CRMN01, University of Sousse Sahloul, Sousse 4003, Tunisia; (S.A.); (M.B.A.)
- Higher Agronomic Institute of Chott-Mariem, University of Sousse, Sousse 4034, Tunisia
| | - Ammar Al-Hamry
- Professorship of Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany;
| | - Mounir Ben Ali
- Centre for Research on Microelectronics and Nanotechnology of Sousse, Tunisia and NANOMISENE Lab, LR16CRMN01, University of Sousse Sahloul, Sousse 4003, Tunisia; (S.A.); (M.B.A.)
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, Sousse 4003, Tunisia
| | - Olfa Kanoun
- Professorship of Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany;
| |
Collapse
|
14
|
Liu S, Yu Y, Ni K, Liu T, Gu M, Wu Y, Du G, Ran X. Construction of a novel electrochemical sensor based on biomass material nanocellulose and its detection of acetaminophen. RSC Adv 2022; 12:27736-27745. [PMID: 36320243 PMCID: PMC9516959 DOI: 10.1039/d2ra04125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
In this work, acidic sulfated cellulose nanocrystals (CNCs) were used as green carriers, and a novel composite material was synthesized and used to design sensors for paracetamol (AP) detection. There are negatively charged acidic sulfate groups on the surface of CNCs, which can enhance the electrostatic repulsion between nanoparticles, thereby increasing the stability and dispersibility of AgNPs in the system, making them less prone to agglomeration. Cationic pillar[5]arene (CP5) with a strong host–guest effect was used as a stable ligand for silver nanoparticles (AgNPs). AgNPs have good electrical conductivity and large specific surface area, which can significantly increase the peak current. In addition, CP5 has excellent supramolecular recognition performance, which can specifically recognize the guest molecule AP to form an inclusion complex, so that a large number of AP molecules are attached to the electrode surface, which is beneficial to the amplification of electrochemical signals. The prepared sensor is more attractive in terms of sensitivity and recognition performance; the host–guest binding constant was (3.37 ± 0.26) × 104 M−1, which can be obtained with good linearity (R2 = 0.996), low detection limit (90 nM, LOD = 3σ/k, S/N = 3) and a wide linear range (0.5–500 μM). The electrochemical sensor showed good performance in quantitative analysis, stability, selectivity, reproducibility, and actual sample detection, providing high feasibility for real-time monitoring of paracetamol; it also provides a new idea for a green sensor. In this work, acidic sulfated cellulose nanocrystals (CNCs) were used as green carriers, and a novel composite material was synthesized and used to design sensors for paracetamol (AP) detection.![]()
Collapse
Affiliation(s)
- Sichen Liu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Yanbo Yu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Kelu Ni
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Tongda Liu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Min Gu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Yingchen Wu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Guanben Du
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xin Ran
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
15
|
Park S, Seo S, Lee NS, Yoon YH, Yang H. Sensitive electrochemical immunosensor using a bienzymatic system consisting of β-galactosidase and glucose dehydrogenase. Analyst 2021; 146:3880-3887. [PMID: 33983348 DOI: 10.1039/d1an00562f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bienzymatic systems are often used with electrochemical affinity biosensors to achieve high signal levels and/or low background levels. It is important to select two enzymes whose reactions do not exhibit mutual interference but have similar optimal conditions. Here, we report a sensitive electrochemical immunosensor based on a bienzymatic system consisting of β-galactosidase (Gal, a hydrolase enzyme) and flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH, a redox enzyme). Both enzymes showed high activities at neutral pH, the reactions catalyzed by them did not exhibit mutual interference, and the electrochemical-enzymatic redox cycling based on FAD-GDH coupled with enzymatic amplification by Gal enabled high signal amplification. Among the three amino-hydroxy-naphthalenes and 4-aminophenol (potential Gal products), 4-amino-1-naphthol showed the highest signal amplification. Glucose, as an electro-inactive, stable reducing agent for redox cycling, helped in achieving low background levels. Our bienzymatic system could detect parathyroid hormone at a detection limit of ∼0.2 pg mL-1, implying that it can be used for highly sensitive electrochemical detection of parathyroid hormone and other biomarkers in human serum.
Collapse
Affiliation(s)
- Seonhwa Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Seungah Seo
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | | | | | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
16
|
Zamarchi F, Vieira IC. Determination of paracetamol using a sensor based on green synthesis of silver nanoparticles in plant extract. J Pharm Biomed Anal 2021; 196:113912. [PMID: 33581590 DOI: 10.1016/j.jpba.2021.113912] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
The biosynthesis of nanometals using a plant extract is simple, efficient, fast, cost-effective and eco-friendly. In this study, a pine nut extract (Araucaria angustifolia) was obtained and used as a reducing and stabilizing agent in the synthesis of silver nanoparticles. An electrochemical sensor based on the silver nanoparticles obtained and exfoliated graphite nanoplatelets applied to a glassy carbon electrode was developed for the determination of paracetamol. To optimize the synthesis of the silver nanoparticles, important factors such as temperature, extract:water ratio, silver nitrate concentration and extract stability time were studied. The factors influencing the performance of the sensor were studied in detail and the results demonstrated good repeatability and electrode-to-electrode repeatability (relative standard deviations of 1.8 and 4.0 %, respectively). Under optimized conditions, there was a linear response to paracetamol concentrations of 4.98 × 10-6 to 3.38 × 10-5 mol L-1, with a detection limit of 8.50 × 10-8 mol L-1. No reports on the biosynthesis of AgNPs using Araucaria angustifolia could be found in the literature. The sensor developed showed good stability and was used successfully for the quantification of paracetamol in pharmaceutical products.
Collapse
Affiliation(s)
- Felipe Zamarchi
- Department of Chemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Iolanda Cruz Vieira
- Department of Chemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
17
|
Dou N, Qu J. Rapid synthesis of a hybrid of rGO/AuNPs/MWCNTs for sensitive sensing of 4-aminophenol and acetaminophen simultaneously. Anal Bioanal Chem 2020; 413:813-820. [PMID: 32783127 DOI: 10.1007/s00216-020-02856-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/26/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
In this work, a hybrid of multiwalled carbon nanotubes, nanogold, and reduced graphene (rGO/AuNPs/MWCNTs) was synthesized rapidly with an easy method, and then combined with chitosan (CS), which was fixed on a glassy carbon electrode (GCE) to construct a new kind of electrochemical sensor to simultaneously determine 4-aminophenol (4-AP) and acetaminophen (AC). When detecting 4-AP and AC simultaneously, the linear range is 0.12~12 μM for acetaminophen and 0.05~25 μM for 4-aminophenol; the detection limit is 42 nM for acetaminophen and 2.95 nM for 4-aminophenol. Compared with previously related reports, the proposed sensor has an excellent electrocatalytic performance for the redox of 4-AP and AC, which can effectively determine 4-AP and AC simultaneously in actual samples and has potential application prospect. Graphical abstract.
Collapse
Affiliation(s)
- Nannan Dou
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Jianying Qu
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
18
|
Voltammetric detection of silver in commercial products on boron doped diamond electrode: stripping at lowered potential in the presence of thiosulfate ions. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02634-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|