1
|
Golysheva EA, Baranov DS, Dzuba SA. Evidence for capture of spin-labeled ibuprofen drug molecules by lipid rafts in model membranes. Chem Phys Lipids 2024; 266:105450. [PMID: 39491578 DOI: 10.1016/j.chemphyslip.2024.105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Lipid rafts are lipid-cholesterol nanostructures thought to exist in cell membranes, which are characterized by higher ordering compared to their surroundings. Ibuprofen and other non-steroidal anti-inflammatory drugs (NSAIDs) have a high affinity for phospholipid membranes and can alter their structure and biological properties. Here we use electron paramagnetic resonance (EPR) in its pulsed electron spin echo (ESE) version to study spin-labeled ibuprofen (ibuprofen-SL) in a raft-mimicking bilayer, which consists of an equimolar mixture of the phospholipids dioleoyl-glycero-phosphocholine (DOPC) and dipalmitoyl-glycero-phosphocholine (DPPC), with cholesterol added in various proportions. ESE decays are sensitive to the presence of low-temperature small-angle orientational motions of molecules - stochastic molecular librations. The data obtained show that in the presence of lipid rafts the temperature dependence of the spin relaxation rate induced by this motion reaches a plateau. This behavior is characteristic of non-cooperative motion of a molecule bound to some structure denser than the rest of the medium. Based on this analogy, the data obtained were interpreted as evidence that ibuprofen-SL molecules are adsorbed on the raft boundaries.
Collapse
Affiliation(s)
- Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Denis S Baranov
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| |
Collapse
|
2
|
Kashnik AS, Baranov DS, Dzuba SA. Spatial Arrangement of the Drug Ibuprofen in a Model Membrane in the Presence of Lipid Rafts. J Phys Chem B 2024; 128:3652-3661. [PMID: 38576273 DOI: 10.1021/acs.jpcb.4c01507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Many pharmaceutical drugs are known to interact with lipid membranes through nonspecific molecular interactions, which affect their therapeutic effect. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) and one of the most commonly prescribed. In the presence of cholesterol, lipid bilayers can separate into nanoscale liquid-disordered and liquid-ordered structures, the latter known as lipid rafts. Here, we study spin-labeled ibuprofen (ibuprofen-SL) in the model membrane consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol in the molar ratio of (0.5-0.5xchol)/(0.5-0.5xchol)/xchol. Electron paramagnetic resonance (EPR) spectroscopy is employed, along with its pulsed version of double electron-electron resonance (DEER, also known as PELDOR). The data obtained indicate lateral lipid-mediated clustering of ibuprofen-SL molecules with a local surface density noticeably larger than that expected for random lateral distribution. In the absence of cholesterol, the data can be interpreted as indicating alternating clustering in two opposing leaflets of the bilayer. In the presence of cholesterol, for xchol ≥ 20 mol %, the results show that ibuprofen-SL molecules have a quasi-regular lateral distribution, with a "superlattice" parameter of ∼3.0 nm. This regularity can be explained by the entrapment of ibuprofen-SL molecules by lipid rafts known to exist in this system with the additional assumption that lipid rafts have a nanoscale substructure.
Collapse
Affiliation(s)
- Anna S Kashnik
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Denis S Baranov
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Cavaglià M, Deriu MA, Tuszynski JA. Toward a holographic brain paradigm: a lipid-centric model of brain functioning. Front Neurosci 2023; 17:1302519. [PMID: 38161798 PMCID: PMC10757614 DOI: 10.3389/fnins.2023.1302519] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Due to the stimulation of neuronal membrane dipoles by action potentials, under suitable conditions coherent dipole oscillations can be formed. We argue that these dipole oscillations satisfy the weak Bose-Einstein condensate criteria of the Froehlich model of biological coherence. They can subsequently generate electromagnetic fields (EMFs) propagating in the inter-neuronal space. When neighboring neurons fire synchronously, EMFs can create interference patterns and hence form holographic images containing analog information about the sensory inputs that trigger neuronal activity. The mirror pattern projected by EMFs inside the neuron can encode information in the neuronal cytoskeleton. We outline an experimental verification of our hypothesis and its consequences for anesthesia, neurodegenerative diseases, and psychiatric states.
Collapse
Affiliation(s)
| | | | - Jack A. Tuszynski
- DIMEAS, Politecnico di Torino, Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, Gliwice, Poland
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Luyet C, Elvati P, Vinh J, Violi A. Low-THz Vibrations of Biological Membranes. MEMBRANES 2023; 13:membranes13020139. [PMID: 36837641 PMCID: PMC9965665 DOI: 10.3390/membranes13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 05/12/2023]
Abstract
A growing body of work has linked key biological activities to the mechanical properties of cellular membranes, and as a means of identification. Here, we present a computational approach to simulate and compare the vibrational spectra in the low-THz region for mammalian and bacterial membranes, investigating the effect of membrane asymmetry and composition, as well as the conserved frequencies of a specific cell. We find that asymmetry does not impact the vibrational spectra, and the impact of sterols depends on the mobility of the components of the membrane. We demonstrate that vibrational spectra can be used to distinguish between membranes and, therefore, could be used in identification of different organisms. The method presented, here, can be immediately extended to other biological structures (e.g., amyloid fibers, polysaccharides, and protein-ligand structures) in order to fingerprint and understand vibrations of numerous biologically-relevant nanoscale structures.
Collapse
Affiliation(s)
- Chloe Luyet
- Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
| | - Paolo Elvati
- Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
| | - Jordan Vinh
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
| | - Angela Violi
- Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
- Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
- Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2125, USA
- Correspondence:
| |
Collapse
|
5
|
Choi WJ, Lee SH, Park BC, Kotov NA. Terahertz Circular Dichroism Spectroscopy of Molecular Assemblies and Nanostructures. J Am Chem Soc 2022; 144:22789-22804. [DOI: 10.1021/jacs.2c04817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Won Jin Choi
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Sang Hyun Lee
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bum Chul Park
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas A. Kotov
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Biocompatible and optically stable hydrophobic fluorescent carbon dots for isolation and imaging of lipid rafts in model membrane. Anal Bioanal Chem 2022; 414:6055-6067. [PMID: 35697813 DOI: 10.1007/s00216-022-04165-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/01/2022]
Abstract
Lateral heterogeneity in cell membranes features a variety of compositions that influence their inherent properties. One such biophysical variation is the formation of a membrane or lipid raft, which plays important roles in many cellular processes. The lipid rafts on the cell membrane are mostly identified by specific dyes and heavy metal quantum dots, which have their own drawbacks, such as cytotoxicity, photostability, and incompatibility. To this end, we synthesized special, hydrophobic, fluorescent, photostable, and non-cytotoxic carbon dots (CDs) by solvent-free thermal treatment using non-cytotoxic materials and incorporated into the lipid bilayers of giant unilamellar vesicles (GUVs) made from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) lipids. A 2:2:1 mixture of DOPC, DPPC, and cholesterol (Chol) develops lipid rafts on the membrane by phase separation. The photophysical properties of the CDs get modulated on incorporation into the lipid rafts that identifies the membrane heterogeneity. The main attempt in this work is to develop a new, simple, cost-effective, and bio-friendly lipid raft marker, which can be used in biological applications, alongside other conventional raft markers, with more advantages.
Collapse
|
7
|
Surovtsev NV, Adichtchev SV. Dynamic response on a nanometer scale of binary phospholipid-cholesterol vesicles: Low-frequency Raman scattering insight. Phys Rev E 2021; 104:054406. [PMID: 34942765 DOI: 10.1103/physreve.104.054406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/18/2021] [Indexed: 11/07/2022]
Abstract
Low-frequency Raman spectroscopy was used to study the dynamic response on a nanometer scale of aqueous suspensions of two-component lipid vesicles. Binary mixtures of saturated phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) and cholesterol are interesting for possible coexistence of solidlike and liquid-ordered phases, while the phase coexistence was not reported for unsaturated phospholipid (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC) and cholesterol mixtures. The DOPC-DPPC mixtures represent the well-documented case of coexisting domains of solidlike and liquid-disordered phases. These three series of lipid mixtures are studied here. A broad peak with the maximum in the range of 30-50cm^{-1} and a narrow peak near 10cm^{-1} are observed in the Raman susceptibility of the binary mixtures and attributed to the acousticlike vibrational density of states and layer modes, respectively. Parameters of the broad and narrow peaks are sensitive to lateral and conformational hydrocarbon chain ordering. It was also demonstrated that the low-frequency Raman susceptibility of multicomponent lipid bilayers allows one to determine the phase state of lipid bilayers and distinguish the homogeneous distribution of molecular complexes from coexisting domains with sizes above several nanometers. Thus, the low-frequency Raman spectroscopy provides unique information in studying phase coexistence in lipid bilayers.
Collapse
Affiliation(s)
- N V Surovtsev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - S V Adichtchev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Unguryan VV, Golysheva EA, Dzuba SA. Double Electron-Electron Resonance of Spin-Labeled Cholestane in Model Membranes: Evidence for Substructures inside the Lipid Rafts. J Phys Chem B 2021; 125:9557-9563. [PMID: 34387998 DOI: 10.1021/acs.jpcb.1c05215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasma membranes are assumed to be highly compartmentalized, which is believed to be important for the membrane protein functionality. The liquid ordered-disordered phase segregation in the membranes results in nanoscale liquid-ordered assemblies-lipid rafts. Double electron-electron resonance spectroscopy (DEER, also known as PELDOR) is sensitive to spin-spin dipolar interactions between spin labels at the nanoscale range of distances. Here, DEER is applied to spin-labeled cholestane, 3β-doxyl-5α-cholestane (DChl), diluted in bilayers composed of an equimolar mixture of dioleoyl-glycero-phosphocholine (DOPC) and dipalmitoyl-glycero-phosphocholine (DPPC) phospholipids, with cholesterol (Chol) added. The DEER data allowed us to detect clustering of the DChl molecules. Their lateral distribution in the clusters in the absence of Chol was found to be random, while in the presence of Chol it became quasi-regular. DEER time traces are fairly well simulated within a simple square superlattice model. For the 20 mol % Chol content, for which at physiological temperatures, the lipid rafts are formed, the found superlattice parameter was 3.7 nm. Assuming that lipid rafts are captioned upon shock freezing at the temperature of investigation (80 K), the found regularity of DChl lateral distribution was interpreted by raft substructuring, with the DChl molecules embedded between the substructures.
Collapse
Affiliation(s)
- Vasily V Unguryan
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia.,Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
Leonov DV, Dzuba SA, Surovtsev NV. Membrane-Sugar Interactions Probed by Low-Frequency Raman Spectroscopy: The Monolayer Adsorption Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11655-11660. [PMID: 32975956 DOI: 10.1021/acs.langmuir.0c02458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Small sugars are known to stabilize biological membranes under extreme conditions of freezing and desiccation. The proposed mechanisms of stabilization suggest membrane-sugar interactions to be either attractive or repulsive. To obtain new insight into the problem, we use a recently developed low-frequency Raman scattering approach which allows detecting membrane mechanical vibrations. For model membranes of palmitoyl-oleoyl-glycero-phosphocholine (POPC) hydrated in aqueous sucrose and trehalose solutions, we studied the Raman peak between 12 and 15 cm-1 that is attributed to an eigenmode of the normal mechanical vibrations of a lipid monolayer. For both sugars, similar results were obtained. With an increase in sugar concentration in solution, the frequency position of the peak was found to decrease by ∼13% which was interpreted as a consequence of the membrane thickening due sugar monolayer adsorption on the membrane surface. The concentration dependence of the peak frequency position was satisfactorily described by a Langmuir monolayer adsorption model. It is concluded that, at small sugar concentrations (less than 0.2 M), the membrane-sugar interactions are attractive, while at higher concentrations (more than 0.4 M) the attraction disappears. The data obtained show that one sugar molecule on the surface interacts with approximately 3-4 polar lipid heads.
Collapse
Affiliation(s)
- Dmitry V Leonov
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nikolay V Surovtsev
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
10
|
Bolmatov D, Kinnun JJ, Katsaras J, Lavrentovich MO. Phonon-mediated lipid raft formation in biological membranes. Chem Phys Lipids 2020; 232:104979. [PMID: 32980352 DOI: 10.1016/j.chemphyslip.2020.104979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Short-wavelength collective molecular motions, also known as phonons, have recently attracted much interest in revealing dynamic properties of biological membranes through the use of neutron and X-ray scattering, infrared and Raman spectroscopies, and molecular dynamics simulations. Experimentally detecting unique vibrational patterns such as, shear phonon excitations, viscoelastic crossovers, transverse acoustic phonon gaps, and continuous and truncated optical phonon modes in cellular membranes, to name a few, has proven non-trivial. Here, we review recent advances in liquid thermodynamics that have resulted in the development of the phonon theory of liquids. The theory has important predictions regarding the shear vibrational spectra of fluids, namely the emergence of viscoelastic crossovers and transverse acoustic phonon gaps. Furthermore, we show that these vibrational patterns are common in soft (non-crystalline) materials, including, but not limited to liquids, colloids, liquid crystals (mesogens), block copolymers, and biological membranes. The existence of viscoelastic crossovers and acoustic phonon gaps define the self-diffusion properties of cellular membranes and provide a molecular picture of the transient nature of lipid rafts (Bolmatov et al., 2020). Importantly, the timescales (picoseconds) for the formation and dissolution of transient lipid rafts match the lifetime of the formation and breakdown of interfacial water hydrogen bonds. Apart from acoustic propagating phonon modes, biological membranes can also support more energetic non-propagating optical phonon excitations, also known as standing waves or breathing modes. Importantly, optical phonons can be truncated due to the existence of finite size nanodomains made up of strongly correlated lipid-cholesterol molecular pairs. These strongly coupled molecular pairs can serve as nucleation centers for the formation of stable rafts at larger length scales, due to correlations of spontaneous fluctuations (Onsager's regression hypothesis). Finally and importantly, molecular level viscoelastic crossovers, acoustic phonon gaps, and continuous and truncated optical phonon modes may offer insights as to how lipid-lipid and lipid-protein interactions enable biological function.
Collapse
Affiliation(s)
- Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States; Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - Maxim O Lavrentovich
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
11
|
Gao Q, Wu G, Lai KWC. Cholesterol Modulates the Formation of the Aβ Ion Channel in Lipid Bilayers. Biochemistry 2020; 59:992-998. [PMID: 31914730 DOI: 10.1021/acs.biochem.9b00968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The misfolding of amyloid beta (Aβ) is one of the predominant hallmarks in the pathology of Alzheimer's disease (AD). In this study, we showed that the formation of the Aβ ion channel on the membrane depended on the cholesterol concentration. From a mechanical aspect, we found that cholesterol levels affected the stability and assembly of lipid bilayers. Measurements on planar lipid bilayers indicated that a small amount of cholesterol interacted with Aβ proteins and promoted the insertion process. Conversely, high cholesterol integrated the lipid bilayer and exerted an opposite effect on Aβ insertion. The Aβ ion channel was then detected by graphene-based field-effect transistors. Results demonstrated that the Aβ ion channel promoted a Ca2+ flux in the presence of 15% cholesterol but prevented a Ca2+ flux in high cholesterol. Thus, cholesterol had a complex impact on the Aβ ion channel that can be described as two different effects. First, a small amount of cholesterol interacted with Aβ and facilitated the Aβ ion channel formation in the membrane. Second, a large amount of cholesterol did not induce the ion flux in the membrane, which can be explained by the cholesterol damage to the regular distribution of the lipid bilayer. Overall, this study suggested a possible approach to consider cholesterol levels for the treatment of AD patients.
Collapse
Affiliation(s)
- Qi Gao
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Guangfu Wu
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - King Wai Chiu Lai
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|