Shiraishi Y, Shimabukuro Y, Shima K, Ichikawa S, Tanaka S, Hirai T. Sunlight-Driven Generation of Hypochlorous Acid on Plasmonic Au/AgCl Catalysts in Aerated Chloride Solution.
JACS AU 2023;
3:1403-1412. [PMID:
37234114 PMCID:
PMC10207101 DOI:
10.1021/jacsau.3c00066]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
HClO is typically manufactured from Cl2 gas generated by the electrochemical oxidation of Cl- using considerable electrical energy with a large concomitant emission of CO2. Therefore, renewable energy-driven HClO generation is desirable. In this study, we developed a strategy for stable HClO generation by sunlight irradiation of a plasmonic Au/AgCl photocatalyst in an aerated Cl- solution at ambient temperature. Plasmon-activated Au particles by visible light generate hot electrons, which are consumed by O2 reduction, and hot holes, which oxidize the lattice Cl- of AgCl adjacent to the Au particles. The formed Cl2 is disproportionated to afford HClO, and the removed lattice Cl- are compensated by the Cl- in the solution, thus promoting a catalytic HClO generation cycle. A solar-to-HClO conversion efficiency of ∼0.03% was achieved by simulated sunlight irradiation, where the resultant solution contained >38 ppm (>0.73 mM) of HClO and exhibited bactericidal and bleaching activities. The strategy based on the Cl- oxidation/compensation cycles will pave the way for sunlight-driven clean, sustainable HClO generation.
Collapse