1
|
Liu T, Gao H, Zhang Y, Wang S, Lu M, Dai X, Liu Y, Shi H, Xu T, Yin J, Gao S, Wang L, Zhang D. Apigenin Ameliorates Hyperuricemia and Renal Injury through Regulation of Uric Acid Metabolism and JAK2/STAT3 Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:1442. [PMID: 36422572 PMCID: PMC9697024 DOI: 10.3390/ph15111442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 08/09/2023] Open
Abstract
Hyperuricemia (HUA) is a kind of metabolic disease with high incidence that still needs new countermeasures. Apigenin has uric-lowering and kidney-protective activities, but how apigenin attenuates HUA and renal injury remains largely unexploited. To this end, an acute HUA mouse model was established by intraperitoneal injection of potassium oxazinate and oral administration with hypoxanthine for 7 consecutive days. Apigenin intervention decreased serum uric acid (UA), creatinine (CRE), blood urea nitrogen (BUN), interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor (TNF-α), interleukin-18 (IL-18), liver xanthine oxidase (XOD), and urine protein levels, and increased serum interleukin-10 (IL-10) and urine UA and CRE levels in HUA mice. Moreover, administration of apigenin to HUA mice prevented renal injury, decreased renal glucose transporter 9 (GLUT9) and urate anion transporter 1 (URAT1) levels, and increased renal organic anion transporter 1 (OAT1). These alterations were associated with an inhibition of IL-6, phospho-janus kinase 2 (P-JAK2), phospho-signal transducer, and activator of transcription 3 (P-STAT3), and suppression of cytokine signaling 3 (SOCS3) expression in the kidneys. Additionally, the molecular docking results showed that apigenin had strong binding capacity with UA transporters and JAK2 proteins. In summary, apigenin could improve UA metabolism and attenuate renal injury through inhibiting UA production, promoting excretion, and suppressing the JAK2/STAT3 signaling pathway in HUA mice. The results suggest that apigenin may be a suitable drug candidate for management of HUA and its associated renal injury.
Collapse
Affiliation(s)
- Tianyuan Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huimin Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Yueyi Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shan Wang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Meixi Lu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuan Dai
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yage Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hanfen Shi
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianshu Xu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiyuan Yin
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sihua Gao
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
2
|
Tang JF, Li XL, Li WX, Zhang SQ, Li MM, Zhang H, Wang XY, Niu L. Pharmacokinetic comparison of four major bio-active components of naoxintong capsule in normal and acute blood stasis rats using ultra-performance liquid chromatography coupled with triple-quadrupole mass spectrometry. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.336835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
3
|
Tang JF, Li XL, Li WX, Zhang SQ, Li MM, Zhang H, Wang XY, Niu L. Pharmacokinetic comparison of four major bio-active components of naoxintong capsule in normal and acute blood stasis rats using ultra-performance liquid chromatography coupled with triple-quadrupole mass spectrometry. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_53_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Shao LH, Fan SL, Meng YF, Gan YY, Shao WB, Wang ZC, Chen DP, Ouyang GP. Design, synthesis, biological activities and 3D-QSAR studies of quinazolinone derivatives containing hydrazone structural units. NEW J CHEM 2021. [DOI: 10.1039/d0nj05450j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of novel quinazolinone derivatives containing hydrazone structural units were synthesized and their antitumour activities were evaluated.
Collapse
Affiliation(s)
- Li-Hui Shao
- College of Pharmacy
- Guizhou University
- Guiyang 550025
- China
| | - Si-Li Fan
- College of Pharmacy
- Guizhou University
- Guiyang 550025
- China
| | - Ying-Fen Meng
- College of Pharmacy
- Guizhou University
- Guiyang 550025
- China
| | - Yi-Yuan Gan
- College of Pharmacy
- Guizhou University
- Guiyang 550025
- China
- State Key Laboratory of Functions and Application of Medicinal Plants
| | - Wu-Bin Shao
- Center for R&D of Fine Chemicals of Guizhou University
- Guiyang
- China
| | - Zhen-Chao Wang
- College of Pharmacy
- Guizhou University
- Guiyang 550025
- China
- State Key Laboratory of Functions and Application of Medicinal Plants
| | - Dan-Ping Chen
- College of Pharmacy
- Guizhou University
- Guiyang 550025
- China
- State Key Laboratory of Functions and Application of Medicinal Plants
| | - Gui-Ping Ouyang
- College of Pharmacy
- Guizhou University
- Guiyang 550025
- China
- State Key Laboratory of Functions and Application of Medicinal Plants
| |
Collapse
|